Our goals:

O understand principles
behind transport
layer services:

O multiplexing/demultipl
exing

O reliable data transfer

o flow control

O congestion control

3 learn about transport
layer protocols in the
Internet:

o UDP: connectionless
transport

o TCP: connection-oriented
transport

O TCP congestion control

Transport Layer

3-1

0 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-2

O provide /ogical communication
between app processes
running on different hosts

3 transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments intfo messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

application
trans-ort

netwom
data li

Transport Layer

data link

physical

3-3

O network layer: logical
communication
between hosts

3 fransport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

0 processes = Kids

O app messages = letters
in envelopes

7 hosts = houses

3 transport protocol =
Ann and Bill

3 network-layer protocol
= postal service

Transport Layer

3-4

Internet transport-layer protocols

3 reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup

3 unreliable, unordered
delivery: UDP

Q NO-TrinsS exTtension o]

"best-effort” IP

7 services not available:

O delay guarantees
O bandwidth guarantees

data link
physical

network

data link

physical I network

data link

physical

AP

transport

networ

data link

physical

Transport Layer 3-5

3 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-6

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — — Multiplexing at send host: _
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket O = process

application application application
L | S
transport '%mipﬁ transport
network neTvl/or'k network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-7

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits >

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-8

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket(12534) ;
DatagramSocket mySocket2 = new

DatagramSocket(12535) ;
0 UDP socket identified by

two-tuple:

(desT IP address, dest port number)

3 When host receives UDP
segment:

O checks destination port
humber in segment

O directs UDP segment to
socket with that port
humber

O IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-9

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-10

f'nnnari'inn_,_nn
LOUTMICC 11011~ Ui

3 TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

O receiving host uses all
four values to direct
segment to appropriate
socket

7
1

ted demux

LU IWAZN

O Server host may support
many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

7 Web servers have
different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

Transport Layer 3-11

Connection-oriented demux

(cont)

SP: 5775

DP: 80

S-IP: B

D-IP:C

client
IP: A

SP: 9157

L

DP: 80

S-IP: A

D-IP:C

server
IP: C

SP: 9157

DP: 80

S-IP: B

D-IP:C

Transport Layer 3-12

Client
IP:B

Connection-oriented demux:

Threaded Web Server

client
IP: A

P4 >
1 I .
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-13

Client
IP:B

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-14

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones”
Internet fransport Why is there a UDP?

EPOTOCO') . 7 no connection
3 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 7 simple: no connection state
o delivered out of order at sender, receiver
To app J small segment header

a

O connectionless: no congestion control: UDP

O no handshaking between can blast away as fast as
UDP sender, receiver desired

O each UDP segment
handled independently
of others

Transport Layer 3-15

UDP: more

J often used for streaming
multimedia apps

32 bits >

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
3 other UDP uses ing,"Jdiné
o DNS header
o SNMP
A reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format

Transport Layer 3-16

| INP ~h leciim
Ji O

or
\J oLV UL

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment

Sender:

O treat segment contents
as sequence of 16-bit
Integers

3 checksum: addition (1's
complement sum) of
segment contents

0 sender puts checksum
value into UDP checksum
field

Receiver:

3 compute checksum of
received segment

O check if computed checksum
equals checksum field value:

o NO - error detected

O YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-17

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1

11 0011001100110
110101010101 0101

wraparound@lOlllOll10111011

sum

10 0] 0111100
checksum 01 1 1 000011
t

Transport Layer 3-18

111 111
00O 00O

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-19

TCP: O verview rrcs: 793 1122, 1323, 2018, 2581
O point-to-point: 3 full duplex data:
O onhe sender, one receiver O bi-directional data flow
1 reliable, in-order byte In same connection
steam: O MSS: maximum segment

size
7 connhection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0 send & receive buffers before data exchange

3 flow controlled:

o sender will not
foor overwhelm receiver

O no "message boundaries”
O pipelined:
O TCP congestion and flow
control set window size

socket
door —

TCP
send buffer

() [Segment] —p ()

Transport Layer 3-20

TCP segment structure

URG: urgent data

source port #

32 bits >

dest port # counting

(generally not used)\
ACK: ACK #

N sequence number

by bytes
of data

valid]

(not segments!)

PSH: push data now

S

—acknowledgement number
head| not
Sed

F

Jen APR

Receive window

(generally not used)

Urg data pointer # bytes

RST, SYN, FIN:— |
connection estab

cheeksum
/

Op‘y(s (variable length)

rcvr willing
to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-21

O byte stream
“number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

o cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementer

host ACKs
receipt
of echoed
C

Seq:42
, ACK =
W
host ACKs
receipt of
'C', echoes
back 'C’

time
simple telnet scenario

\ 4

Transport Layer 3-22

