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Figure 5.2 Additive white Gaussian noise (AWGN) model of a channel.
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Figure 5.3 (a) Synthesizer for generating the signal s;(t).

(b) Analyzer for generating the set of signal vectors {s; ).
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5.3 Conversion of the Continuous
AWGN Channel into a Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure 5 3
is not the transmitted signal s;(¢) but rather the received signal x(t) defined in accordang
with the idealized AWGN channel of Figure 5.2. That is to say,

0=t=T
i=1,2,....,.M
where w(t) is a sample function of a white Gaussian noise process W(t) of zero mean apg

power spectral density No/2. Correspondingly, we find that the output of correlator j, say
is the sample value of a random variable X;, as shown by ’

x(t) = si{2) + wit), { (5.9

T
x; = L x(t)p{t)dt 5
| 29
=$fi+wf’ i=l,2,...,N )

The first component, s;;, is a deterministic quantity contributed by the transmitted signa|
s;(#); it is defined by

T
$z = L si(t)p;(t)dt {5.30)

The second component, w;, is the sample value of a random variable W; that arises because
of the presence of the channel noise w(t); it is defined by

w; = L w(t)o,(t)dt (5.31)




5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding

Suppose that

" each time slot of duration T seconds;jone of the M possible signals s:(fh

55(1), . .., Sy(t) s transmitted with equal probability, 1/M. For geometric signal represel

tation, the signalls;{#), i = 1,2, ..., Ml is applied to a bank of correlators, with a common

input and supplied with an appropriate set of N orthonormal basis functions. The resultiog

correlator outputs define the signal vector s;. |
good as knowing the transmitted signal ;{f] itsels, and vice versa, we may represent

Since knowledge of the signal vector ;188

U

by a point in a Euclidean space of dimension N < M. We refer to this point as the frar

muied sighal pomt or message pomi, 1he set of message ponts corresponding to the set
{s,-(t)]}f,?, Fs called a signal constellation.
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Signal constellation for (a) M-ary PSK and (b)
corresponding M-ary QAM, for M = 16.



However, the representation of the received signal x(¢) is complicated by the presence
of additive noise w(¢). We note that when the received signal x{t) is applied to the bank
of N correlators, the correlator outputs define the lobservation vector x] From Equation
(5.48), the vector x differs from the signal vector s; by thdmoise vector wjwhose orientation
is completely random. The noise vector w is completely characterized by the noise wt);

Now, based on the observation vector x, we may represent the received signal x(¢)
by 4 point in the same Euclidean space used to represent the transmitted signal, We refer
to this second point as thereceived signal point.|The received signal point wanders about
the message point in a completely random fashion, in the sense that it may lie anywhere
inside a[ Gaussian-distributed “cloud” centered on the message point, [This is illustrated in
Figure 5.7a for the case of a three-dimensional signal space. For a particular realization
of the noise vector w (L.e., a patticular point inside the random cloud of Figure 5.74), the
relationship between the observation vector x and the signal vector s; is as illustrated in
Figute 5,7b.
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Figure 5.7 lllustrating the effect of noise perturbation, depicted in (a), on the location of the
received signal point, depicted in (b).

AWGN is
equivalent to an N-dimensional vector channel described by the observation vector

X =8 + W, i=1,2,..., M (5.48)




Example of samples of matched filter output for some
bandpass modulation schemes
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Suppose that, given the observation vector x, we make the decision # = n1,. The
probability of etror in this decision, which we denote by P,{m,| x), is simply

P.(m] x) = P(m; not sent|x)
5.52
= 1 — P(m, sent|x) 15-52)

The decision-making criterion is to minimize the probability of error in mapping each
given observation vector X into a decision. On the basis of Equation (5.52), we may there-
fore state the optimum decision rule;

Set #1 = M if

S
P(m,' SentIX) = P(mk Sent'x) for a” k £ (5 3)




| graphical interpretation of the maximum ikelihood aecisipn |

rule. Let Z denote the N-dimensional space of all possible observation vectors x. We refer
to this space as the observation space. Because we have assumed that the decision'rule
must say #1 = m;, wherei = 1,2, ..., M, the total observation space Z is cqrrespondmgly
partitioned into M-decision regions, denoted by Zi, Z,, . .., Zp. Accordingly, we may
restate the decision rule of Equation (5.55) as follows:

[ Observation vector x lies in region Z, if ] 5.59

the Euclidean distance | x — s | is minimum for & = i

Equation {5.59) states that the maximum Jikelihood decision rule is simply to choose the
message point closest to the received signd point, which is intuitively satisfying,




|| x — s || is the Euclidean distance
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FIGURE 5.8 Illustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely,

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy, E, and equal probability.



Week (6)- Lecture (2)
Signal-Space Analysis

5.6 Correlation Receiver

5.7 Pmbubilﬁty of Error




- 5.6 Correlation Receiver [ s (;) } are equally likely .
The correlation receiver consists of two parts :
+* detector (correlator)

+* decoder
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The optimum receiver of Figure 5.9 is commonly referred to as a correlation receiver.
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FIGURE 5.9 ({a) Detector or demodulator. (b) Signal transmission decoder.



{ 5.6 Correlation Receiver

From the material presented in the previous sections, we find that for an AWGN channel
and for the case when the transmitted signals s;(z), 5, .., Sult) are equally likely, the

optimum receiver consists of two subsystems,| which are detailed in Figure 5.9 and de

- >N
——

scribed here:

1. The detector part of the receiver]is shown in Figure 5.92. It consists of a bank of M
product-integrators or correlators] supplied with a corresponding set of coherent
reference signals or orthonormal basis functions ¢y(t), ¢a(t), ..., énit) thar att
generated locally. This bank of correlators operates on the received signal x(t)
0 <t < T, to produce the observation vector X,
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2. The second part of the receiver, namely, the|signal transmission decoder|is shownit
Figure 5.9b. It is implemented in the form of a (maximum-likelthood decoder)tha
operates on the observation vector X to produce an estimate, 7, of the transmitte
symbol #3;, i = 1, 2,..., M, in a way that would minimize the average probabilit
of symbol error. In accordance with Equation (5.61), the N elements of the obser
vation vector x are first multiplied by the corresponding N elements of each of the
M signal vectors s,, s, . - - 5 Su, and the resulting products are successively summet
in accumulators to form the corresponding set of inner products Ixls [k=1,2,..
M}. Next, the inner products are corrected for the fact that the transmitted !
energies may be unequal. Finally, the largest in the resulting set of numbers is selected
and an appropriate decision on the transmitted message is made.
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> ExampLE 4.1 Matched Filter for Rectangular Pulse

Consider 2 signal g(#) in the form of a rectangular pulse of amplitude A and duration T, z
shown in Figure 4.2a. In this example, the impulse response Fk(z) of the matched filter has
exactly the same waveform as the signal icself. The output signal g,(z) of the matched filrer
produced in response to the input signal g(2) has a triangular waveform, as shown in Figure
4.2b.

The maximumn value of the output signal g,(t) is equal to kA*T, which is the energy of

the input signal g(2) scaled by the factor k; this maximum value occurs at £ = T, as indicated
in Figure 4.256.
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FiCURE 4.2 (a) Rectangular pulse. (b)) Matched filter output. (¢) Intcgrator output.
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FIGURE 5.10 Detector part of matched filter receiver; the signal transmission decoder is as
shown in Fig. 5.9b.



5.7 Probability of Error

readily see that the average probability of symbol error, P, is

¥ .
P = E p; Pix does not lic in Z;|m; sent)

:#l

e E P(x does not lie in Z ;|m; sent) (3.67)

;-1

P
{ > P(x lies in Z;|m; sent) °

=

where we have used standard notation to denote the probability of an event and the
conditional probability of an event. Since x is the sample value of random vector X, we
‘may rewrite Equation (5.67) in terms of the likelihood function (when 1, is sent) as
follows:

1 + M
P=1- ﬁg j fxlx|m) dx (5.68)




summary
5.7 Pmlmbility of Error

The average prob. of symbol error

M |
P, =) p,P(x does not liein Z; |mi sent)
=1

M
= _1\172 P(x does not lie in Zi |mi sent) (5.67)
=1
1 M
=1-—73 P(x lies in Zi |mi sent) (5.68)

M =1



