

Department of Electrical and Electronics Engineering Lecturer: Dr. Mohab Mangoud

Course: EENG 372 Quiz (1) – Online Submission - C

April 22, 2020

Marks: 20%		
Time: 60	mins+10	

Student Name	
Student ID Number	

Question (1)	
Question (2)	
TOTAL	

Department of Electrical and Electronics Engineering Lecturer: Prof. Mohab Mangoud

Course: EENG 372 Test (1)

Marks: 20 Time: 60 mins

Answer the following Questions:

Q1. Consider a message signal $m(t) = 20 \cos(2\pi t)$ and a carrier signal $c(t) = 50 \cos(100 \pi t)$, both in volts.

- (1) Find and sketch the resulting AM waveform for 75% modulation (DSB-TC)
- (2) Sketch the spectrum of this AM wave.
- (3) show and write down the bandwidth of the AM wave.
- (4) Find the total power dissipated across a load of 1 Ω for the modulated signal.

Q2. In a DSB-SC AM system, the carrier is $c(t) = 0.5 \cos(20000 \pi t)$ and the message signal is given by m(t) = sinc(t)

- Find and Sketch the frequency domain (spectram) representation of the modulated transmitted AM signal and show the bandwidth of the modulated AM signal. If the modulation scheme is:

(a) DSB-TC

(b) DSB-SC

(c) SSB

(d) VSB

- Design a homodyne receiver to recover the signals m(t) from the received modulated signal.