

University of Bahrain

College of Engineering

Electrical engineering Department

1

Date of publication January 08, 2022, date of current version January 05, 2021.

A Smart Blackbox for Vehicle Tracking and
Monitoring

Ahmed A. Alsahlawi1
1Student at Department of Electrical Engineering, University of Bahrain, Kingdom of Bahrain

Corresponding author: Ahmed A. Alsahlawi (e-mail: 20092127@ stu.uob.edu.bh).

ABSTRACT This paper conducts a comprehensive study of applying the concept of airplanes Blackbox on

vehicle tracking and monitoring at the time of accidents. The solution combines hardware tools like

microcontrollers and sensors and software like MQTT and Node-Red. the data exchanged between

Blackbox and the MQTT server is essential to build confidence in the severity of the accident. The huge

leap in the Internet of things (IoT) field allowed for prototyping smart solutions with the minimum cost

required. This paper highlights the drawbacks of the current systems, showing the missing parameters

required to perform accurate analysis. Constructing the solution is done in steps, starting from connecting

hardware until showing the results. The challenges of implementing such a solution are also highlighted

besides the possible enhancements for future work. this device can also be applied in multiple areas such as

insurance risk analysis and fleet management.

INDEX TERMS IoT, Blackbox, Vehicle Accidents, GPS Tracking

NOMENCLATURE

Abbreviations

AI Artificial Intelligence

IoT Internet of Things

BD Big Data

ML Machine Learning

DL Deep Learning

5G Fifth generation

ICT Information and Communication Technology

Wi-Fi Wireless Fidelity

MCU Microcontroller

MQTT MQ Telemetry Transport

I. INTRODUCTION

The concept of Blackbox is not something new. It was

implemented first in airplanes, to capture the necessary

information such as the speed, geographical location,

attitude, and several other variables such as engine and fuel

information. The same concept can be adapted in any

transport method to provide useful and accurate information

at the time of the accidents. With the emerge of the Internet

of Things (IoT) field, the cost of implementing such

devices is almost cheap and the complexity is acceptable.

Of course, like any other technology, there are multiple

challenges involved. This paper's main aim is to prototype

the concept of Blackbox for vehicles, by implementing it

using simple microcontrollers and a few sets of sensors like

GPS, shock sensors to mimic the Blackbox prototype.

A. Motivation

Most countries nowadays are shifting to become smart cities

and automate all their processes with the help of Artificial

Intelligence (AI). Some of these cities for example are

securing their utilities with regular or smart surveillance,

mostly to reduce crimes, prevent illegal constructions or

sometimes to just monitor the traffic to either detect traffic

jams or to study some accidents. Most of the time, the

process involved in these studies is manual, where the

responsible staff replays the accident to study exactly what

happened. There are multiple factors here that can help the

staff to take specific decisions, which are the quality of

captured video or the angle where the footage is taken from.

Unfortunately, sometimes the angle is not properly aligned

with the accident or sometimes it’s too far and the quality of

the footage is not that clear, so this can result in inaccuracy in

judgments. In another scenario, some of the countries are

already forcing drivers to install dash cameras in their

vehicles, which is quite helpful but in some severe accidents

it can be very hard to judge, or the recording can be

damaged before it's being extracted for an investigation like

in fire accidents. Especially since these dash-cams are

University of Bahrain

College of Engineering

Electrical engineering Department

2

offline, with no utility to update the footage to the cloud in a

frequent manner.

B. RELATED WORK

After searching thoroughly to my best effort in big journals

for recent applications like IEEE and Elsevier, I only found

one article that speaks particularly about the Blackbox

prototyping for vehicles. This could be probably because

most of the modern vehicles are having such technologies

built within, but let's not forget the fact that these features

are available in high-end vehicles with full options set.

Some articles speak about vehicles in smart grids or traffic

management. One article found by Ke Lu et. al. spoke

about detecting driver sleepiness using consumer wearable

devices in manual and partial automated real-world driving.

The study is based on training Artificial Neural Networks

(ANN) to analyze and study the reading of heartrate

features to determine if the driver is sleeping or not [1]. The

main challenge in this approach is that it depends on smart

wearables to capture the data, which is dependent on the

driver not on the vehicle. Another Study done by Abdallah

Kassem [2], very related to this topic is speaking about

prototyping a Blackbox for vehicles. The author used

several sensors, like speed sensors, water sensors, switches,

accident sensors, brake and belt sensors. The sensors were

interfaced with a microcontroller. Although this research is

containing more sensors than what we are suggesting here,

the main lack of this implementation is that it is not

communicating the data into the cloud. The software is

designed with a Visual Basic application to pull the data

whenever it is connected. The second drawback of this

implementation is that it is outdated, the research is

conducted in 2008 and there are a lot of gaps in technology

between now and back then. This is an issue since modern

cities started to adopt Electric Vehicles (EV) and Smart

Power Grids (SG), and the main advantage of these two is

that they are depending on data exchange between vehicles

and SG.

C. Paper Outline

The rest of the paper is divided into the following sections:

Section II will talk about the problem and the theoretical

part of the solution. Section III will illustrate the practical

work done and the software interfacing the captured data.

Challenges and possible enhancements are listed in Section

VI. Final section, will provide the conclusion to this work.

II.BACKGROUND

The biggest issue involved in assessing those accidents is

the lack of information. You will need an expert to analyze

the footage and extract all the possible information. These

experts can cost traffic departments, besides even with an

expert eye there is always a possibility of human errors.

Another contributing factor is vehicle speed, which is

absent at the time of judgment, and could be roughly

estimated by those experts depending on braking marks.

Moreover, the force of the impact, which is generated by

transferring collision energy from car body to the

collided an object is an important factor that can enhance

damage assessment. Therefore, the existence of a cost-

efficient and accurate Blackbox in a vehicle during an

accident, can change the equation and unfold an unseen

detail.

The unit will be combined with multiple modules besides

the main microcontroller board. First, we will need a good

board with reasonable processing power, which can handle

the attached modules and perform additional machine

learning operations such as TinyML. Then, we will need a

GPS module, to get speed information. The location could

be useful if we add it to the factors list when performing

advanced analysis. Third, a Wi-Fi/GSM module is required

to publish the sensed data into the cloud for further

analysis. Last, we will need a Vibration/accelerometer

sensor, to measure the force

of the impact during the collision. These modules attached

with the microcontroller can make a very cost-effective and

more importantly a great tool to capture useful information

to assess these collisions and to provide additionally a

forecast to prevent such accidents in the future, therefore

more lives can be saved. See figure 1, which illustrates a

high overview of the proposed components.

MCU

GPS Module

Location Data

Vibration SensorImpact dataWifi Module Communication

MQTT BrokerSensor Data
Node-Red

Data Stream

FIGURE 1. High level System overview

MQTT is a popular protocol for data transport, and it's

widely used in the IoT. The main characteristic of MQTT is

that it can publish and subscribe for data exchange between

devices and brokers. The packet published contains

multiple information such as topic name, payload message,

QoS. On the other hand, the broker can also publish

something for subscribers to give some instructions. This

allows communication on many devices and reliably allows

data exchange.

University of Bahrain

College of Engineering

Electrical engineering Department

3

C. Hardware Parts

The selected hardware based on figure (1) is as follows:

Microcontroller

The selected microcontroller is ESP8266 board from

ESPRESSIF community. The board is having multiple

advantages, such as enhanced power saving architecture

which makes it works on batter for very long time. It's

highly durable, can work in hard conditions and it's

compact and small which allows for smaller prototype

design and fitting. The most important feature of this board

that it contains Wi-Fi chip onboard, so this factor will

reduce external components and will ease the setup of Wi-

Fi communications [3].

FIGURE 2. ESP8266 microcontroller

Vibration Sensor

For vibration, I have used SW-420 vibration sensor, it's

widely popular. The way it works is that it opens when a

vibration is detected and closes when there is no vibration.

The sensor contains 3 wirings, 2 for power (in & out), and

D0 to output vibration strength. There is also an LED

connected to on the board, goes high and off if there is a

vibration detected [4]. This sensor is operating on 3.3 to 5v,

so this is well flexible to install on any board.

FIGURE 3. SW-420 VIBRATION SENSOR

GPS Sensor

The selected GPS sensor is by Goouuu Tech Company, the

model is GT-U7. The sensor comes with several protocols

which is UART, USB to interface it with USB supported

MCU and it is also compatible with Serial Peripheral

Interface (SPI). The sensor built with powerful power

management, with echo Mode to save power when location

information is not changed. The accuracy is very high,

supported with A-GPS and Assist Now Autonomous

feature [5].

FIGURE 4. GT-U7 GPS NEO-6M SENSOR

For the component above are connected with regular

breadboard to connect wires. Power source is from USB

port (External 3.3v Power). The software used in this

experiment is as the following:

1. Arduino IDE

The Arduino IDE is used with C language to develop the

sketch containing the code required to connect the

components and capture the data form the sensors, store

them into variables then push them to the MQTT Broker.

The figure below shows the interface of Arduino IDE.

FIGURE 5. ARDUINO IDE INTERFACE

University of Bahrain

College of Engineering

Electrical engineering Department

4

2. Mosquito MQTT Broker

Mosquito is open source MQTT broker, based on version

5.0 of the MQTT protocol. It's a lightweight application that

can be installed in any environment and use in any low-

power MCUs connectivity for edge computing. This will be

installed in a cloud server on Azure, to allow it to distribute

MQTT to both local and online hosts.

3. MQTT Explorer

Open-source application by Thomas Nordquist, to explore

and see MQTT topics/ messages published to the broker.

Below is a screenshot to the interface showing sample of

our published topics through the MQTT:

FIGURE 6. MQTT EXPLORER APPLICATION

4. Node-RED

Node red is a programming tool to connect hardware

devices and enhance the flow of IoT processes by

combining multiple features and libraries. Node-red is

developed initially by IBM, with JavaScript library Node.js

[6]. The node red can be installed anywhere, on local

machine or on server.

III. LAB WORK

This section will carry the steps followed to connect the

components, show the code and the end results.

1- First, we will need to connect the hardware together

with the ESP8266 board. The connectivity of the

components is shown in the schematic diagram below:

FIGURE 7. SCHEMATIC DIAGRAM OF THE BLACKBOX

2- Besides the diagram below, I will Add an LED with

resistor and connect it to D5. This is optional step, I

will just use it to blink if the MQTT broker connected

as the device will not have any other outputs to indicate

or debug. This step is just for debugging.

3- The final connections of the components are shown in

the image below.

FIGURE 8. MCU AND SENSOR ARE CONNECTED TOGETHER

4- Now we need to connect the NodeMCU (ESP8266) to

the computer to install the sketch needed to capture

vehicle data. To perform this step, we will need to first

install ESP8266 USB drivers from [3]. After installing

the drivers, we need to add the library to Arduino IDE

to install board drivers to program it

FIGURE 9. ARDUINO IDE PREFERENCE SCREEN

5- After adding the library to the preference section, you

will be able to see the board in Board Manager

FIGURE 10. BOARD MANAGER IN ARDUINO IDE

University of Bahrain

College of Engineering

Electrical engineering Department

5

6- now the board is added and therefore we can program

it with any sketch we want. The next step will be to do

the code needed (detailed code notes in appendix B)

7- Now for the code, we will include the needed libraries:
#include <TinyGPS++.h>

#include <SoftwareSerial.h>

#include <PubSubClient.h>

#include <ESP8266WiFi.h>

TinyGPSPlus gps;

SoftwareSerial ss(D2, D1);
TinyGPS++ is the library for GPS module [7], it will

provide a decode mechanism for GPS signals. Software

serial is a library used to shift the usage of original

serial ports (TX and RX) to other digital pins. In our

case we selected D1 and D2. This step is needed to

avoid the inturrption in TX and RX when the program

is uploaded or resetted in the MCU. Then we setup

wifi credentials to connect to the Wi-Fi.
const char* wifi_ssid = "xxx";

const char* wifi_password = "xxx";
Afterward, we do the setup for the MQTT broker

server, which is hosted in the internet in Azure web

server.
#define mqtt_server "20.124.199.242"

#define mqtt_port 1883

#define mqtt_user "ahmed"

#define mqtt_password "password"

#define out_topic "vibration"

#define location_long_topic "lon"

#define location_lat_topic "lat"

#define device_id "id"

#define location_speed_topic "speed"

8- After setting up the variable and initiating the MQTT

broker, we then start to read GPS with vibration sensor

Data from the sensors and publish them into the topics

via MQTT client. The code below
client.publish(out_topic,

String(measurement).c_str(), true);

client.publish(location_long_topic,

lat_str.c_str(), true);

client.publish(location_lat_topic,

lng_str.c_str(), true);

client.publish(device_id,"ESP8266Blackbo

x", true);

client.publish(location_speed_topic,

speed_str.c_str(), true);
9- Now Once the GPS is connected, it takes up to 5

seconds to get signals and connect to GPS satellites.

Only then, sensor LED will start to blink more

frequently and gets the data. To test if it is working

well, I have connected to Azure server via the Remote

Desktop tool by Microsoft and logged in into MQTT

explorer. See appendix A for more on Azure Setup.

FIGURE 11. MICROSOFT REMOTE DESKTOP APPLICAITON

10- After checking the MQTT explorer, I started to get data

for my current position.

FIGURE 21 . MQTT EXPLORDER, SHOWING MY CURRENT
LOCATION

Vibration is given with integer value, Longitude and

Latitude are given with Geo-Coordinates, ID is passed

by to identify the device (in case we have more), Speed

is with Kilometers per hour.

11- Now after connecting everything, we we are getting all

what we need from the sensors. We will shift our

attention to handle these data within Node-red.

12- Installing Node-Red in the PC will require Node.js to

be installed as a pre-requisite. We download it from the

original website at https://nodejs.org/en/ .

13- Afterward, we install node-red application from it's

website https://nodered.org/ . Note that Node-Red is

host application, which means it can be installed within

my local computer, web server or even in an android

device or Raspberry Pi x. As long as my MQTT broker

is setup in an online server, it can serve Node-Red or

any application capable of handling/receiving MQTT

messages wherever it's installed.

14- Now the next step is to run the node red in the

computer to start creating flows and handling the data

received from my sensors. See the figure below of how

we can start Node-red.

https://nodejs.org/en/
https://nodered.org/

University of Bahrain

College of Engineering

Electrical engineering Department

6

FIGURE 31 . NODE-RED STARTUP

15- After the lunch of Node-RED, we visit the link

displayed in the log as provided http://127.0.0.1:1880

to see the node-red interface, as illustrated in figure 13

FIGURE 41 . NODE-RED FLOW CONTROL SCREEN

To prototype the Blackbox, I have split our data

processing into two parts. The first part will take care

of the interface to display vehicle information within

charts in a dashboard. The second part will store the

location of the vehicle with its speed and vibration

strength whenever the vibration exceeds a certain limit.

This should represent the impact moment.

16- For the first part, we will display the live data into our

dashboard to reflect sensor data in real-time.

FIGURE 51 . NODE-RED DASHBOARD SCREEN

17- Next, we will do the analysis part. And for this, we will

start analyzing the variables. For our scope, we will

consider vibration readings to determine the power of

the impact. With Node-Red, we will create a function

to decide if it is an impact or not. This can be easily

done with the following code in node red:
if (msg.payload >= 1500)

{

 return msg;

}

For our experiment, I made an impact decision stands

on the value of 1500. Anything beyond will consider

an impact. Note here that this will need to be adjusted

based on the environment of the vehicle, we don’t want

a speed bump to be considered as an impact.

18- Finally, after filtering the accidents, we will have to

store the message payload in excel. This can be done

easily in Node-Red with "csv" node, which accept the

payload and store it directly in excel file. You can see

clearly the speed of the vehicle, vibration strength,

longitude and latitude of the vehicle, ID of the device

and Linux based timestamp. See figure (16):

FIGURE 61 . IMPACT DETAILS RECORDED IN EXCEL

19- On the other side, I have made a notification to reach

traffic department, to alert them with accidents. This

could be useful if they want to send a policeman to the

site. The image below shows sample of the email to be

sent:

FIGURE 71 . EMAIL SENT TO TRAFFIC DEPARTMENT

20- On the other hand, if there is a critical accident, the

driver will be notified and the national ambulance

system that there is a critical accident happened. Fast

report will allow to save more lives as in such

accidents every second counts. the driver will receive a

message that an ambulance is reaching him, to calm

him down.

http://127.0.0.1:1880/

University of Bahrain

College of Engineering

Electrical engineering Department

7

FIGURE 18. DRIVER MESSAGE FOR CRITICAL ACCIDENTS

The SMS below is configured using Twillio provider, we

setup a Twilio account, and capture the information

provided to start sending SMS to the client:

FIGURE 19. TWILLIO ACCOUNT MAIN CONFIG SCREEN

We insert the provided information to Twilio node in Node-

Red, with configuring the name and the from string. This

way the application is ready to send messages.

FIGURE 20. TWILLIO NODE SETUP IN NODE-RED

IV. RESULTS

I have taken the device into a test drive, into Bahrain main

highway, to verify the accurateness of the data collected.

The data gathered is accurate. The speed has 1 degree the

actual vehicle, but most of the time it gives exact readings.

The 1 degree of error could be because of communication

delays, as I had quite slow connectivity to the internet. But

even with this degree, the result is still almost accurate and

can give 99% accuracy in collision analysis. see figure 21,

it shows the data for actual trip I took to test the device

GPS. You can clearly see the device on my hand (named it

ESP8266Blackbox), changes in location and speed.

FIGURE 21. TRIP RECORDS ON BAHRAIN HIGHWAY, CAPTURED
IN TRACKING.CSV

On the other hand, during my trip to simulate an accident, I

have hit the device with my hands to get a strong vibration

and see if the moment will be captured or not. you can see

clearly from figure 22 that Node-Red recorded the "hit"

moment at the speed of 115 and 114, with the time stamp

for that moment.

FIGURE 21. ACCIDENT RECORDS ON BAHRAIN HIGHWAY,
CAPTURED IN ACCIDENTS.CSV

You can also see the location captured at the time of the

accident. The accuracy of this information can provide

good help to police departments to assess the accident and

how critical it is. This can even be enhanced more by

adding more sensors or applying Artificial Neural Networks

(ANN) to provide on-time accurate, AI-based decisions.

This is a very good result but can be more enhanced by

University of Bahrain

College of Engineering

Electrical engineering Department

8

adding more sensors to the unit, which we will talk about

next.
V. CHALLENGES
A. USER PRIVACY

User privacy is one of the important challenges in this

project. We are collecting user locations, which means we

knows where the drivers are at any time. This is a sensitive

issue and need to be studied very well to apply strict

measures to control data availability. Moreover, we need to

have a strong authorization system to allow limited staff to

access these data. We need a tight control and regulation in

term of distributing such devices in the market, to avoid any

legal related issues.

B. SECURITY

In any application, security is always the first concern to

arise. In our prototype, mostly need the security for data

transmission since it contains sensitive data. This will

ensure that there is no data leak due to an attack therefore

we reduce the risk of data abuse.

C. COST OF IMPLEMENTATION

It cost almost 14 BHD for a single device component. This

is fair for 2 or 10 devices, but for 700,000 vehicles, we will

need around 9.8 million Dinars. This is a quite large budget

to reserve, although this can be paid by the drivers

themselves at the time of vehicle registration. Moreover,

there are also the cost of infrastructure, like fast internet

connectivity with 4G or 5G, and a strong database and

application servers to handle the massive data traffic caused

by these devices. consequently, this will require a thorough

study to make sure the infrastructure is reliable and good

enough to handle the load all of the time.

D. STORAGE

The data generated from this device is massive. So we will

need to use Big Data (BD) concepts and analysis techniques

to handle the transmission and manage the traffic from one

side, and to store and retrieve the data in the optimum

manner. Back to point C, we will need a large, optimized

database to store and retrieve all the data faster.

E. INFRASTRUCTURE

Since these devices are used to report accidents, gather

information and they will transfer a quite massive data

amounts, we will need a strong network infrastructure. We

will need fast internet connectivity to transfer sensors data

in Realtime. This is also critical for severe accidents, since

we will need to report it to the hospitals to send the nearest

ambulance to save lives.

Besides having a good communication, we will need to

apply strong security mechanisms on data transfer, data

store, data gathering to prevent any possible attacks or data

leakage.

VI. POSSIBLE ENHANCEMENTS AND POSSIBLE
APPLIATIONS

The Blackbox is a starting prototype. It can have more

accuracy and provide more information by adding more

sensors. For example, we can add accelerometer to support

the vibration sensors in accident decisions, where vehicle

flipping is involved. This can enhance the decision of the

criticality of the accident. We can add mics, with TinyML

on the MCU to allow hot-word activation in case the user

needs help if he is stuck or got disabled, or even in case of

natural disasters like floods, especially when the driver is in

isolated area. We can add cameras, with computer vision

technology to identify more the circumstances of the

accident using Deep Learning Methods, and to help

identifying accident place when we lost the signals from

GPS. The current application is lacking AI decisions. We

can enhance this prototype by feeding a database with

sensors data for further analysis instead of just saving them

in excels and wait for staff do it. This could enhance the

decisions and eliminate human errors as well.

POSSIBLE APPLICATIONS

A. Insurance Risk Analysis

As for the applications, we can not only use this for helping

traffic accidents, but we can use it for insurance companies

as well. The availability of such data can help an insurance

company to better calculate the risks involved with insuring

a client. Current insurance practices involve judging the

client by his address, age, vehicle type, make model. we

can use the information provided between Blackbox to

analyze driving behavior, if he is abusing the car, or driving

gently. Such information can give a better pricing scheme,

where both insurance companies and the drivers can benefit

from. It can provide "Live" risk analysis.

B. Fleet Management

The same device can be used to manage fleet of vehicles,

say in rental car company. It can provide information about

the vehicle location, speed, vibration which can determine

if there is an abuse in the vehicle usage. Such information

can also reduce costs and prices for those companies and

their customers.

University of Bahrain

College of Engineering

Electrical engineering Department

9

V. APPENDIX
A. AZURE SERVER SETUP

Azure is a service provided by a Microsoft, for cloud

computing. It provides a very large set of services, such as

Virtual Machines (VM), AI computational instances,

hosting servers, database management and much more. Our

interest for this project is to create a server to install MQTT

broker within, to allows us to push the data into the cloud

instead of working locally. Firsts I signed up in Azure in

https://portal.azure.com/, then I went to VM section. There,

we click on " + Create" in the top left, then select VM. The

following screen will show

You can see in figure (A-1) that you must fill the required

information. Subscription is your subscription on Azure

(Account), you have to name it, in my case I named the

machine MqttBlackbox , assign the machine to data center (

Region), select type of the machine as windows server 2022,

and select the desired size which is the processing power and

capacity.

Next will be to setup administrator account, which will allow

you to access the VM through Remote Desktop (RD) app,

provided by default on windows. Finally, we will hit on

Review + create to review the summery of our selection and

create the VM. This should take few minutes, after that the

machine is ready to be used:

On networking tab, we will need to setup firewall rules to

allow the MQTT to communicate to the outside. We will first

create rule, and allow port 1883 to be accessed from the

outside. This way any device with MQTT username and

password will be able to access the server and publish topics.

FIGURE A-1. CREATE VM WINDOW IN AZURE

FIGURE A-3. CREATE INBOUND RULE IN NETWORKING

FIGURE A-2. VM DETAILS AFTER ITS DONE

FIGURE A-4. FINAL VM ACCESSED FROM RD

University of Bahrain

College of Engineering

Electrical engineering Department

10

B. CODE REPOSITORY

The code to conduct this experiment is uploaded to GitHub

repositories, can be found with more detailed notes on the

code at this link:

https://github.com/alsahlawi/blackbox/blob/main/

blackbox.ino

ACKNOLEDGEMENTS

Special thanks for Prof. Mohab Mangood, from university

of Bahrain for encouraging me to conduct such experiment,

and to get more involved in Internet of things devices. the

thanks are also for FABLAB Bahrain team for arranging

practical course under the title of "Introduction in the IoT"

where it give me practical knowledge on how to handle

Arduino boards.

VI. CONCLUSION

Such IoT devices can enhance the quality of our lives. It

can provide a great help to traffic departments to better

assess accidents, with low costs. It also can help people in

need, especially in large scale countries where there are

deserts and isolated areas. In this report, we have used a

cheap component to construct a prototype of the Blackbox.

We started by introducing the concept and elaborating more

in the problem. Afterward we went through the motivation

to conduct this experiment. Passing by the background, we

showed hardware and software components used in this

experiment, and their features. The next step was to

experiment, step by step under Lab Work section. The steps

start with preparing the components and connect them, then

prepare the code for uploading into the microcontroller.

Then we prepared the server and installed MQTT broker,

and installed Node-Red with the necessary flows to control

the dashboards and data analysis. We then showed the

result of the experiment, showing the data gathered from

the sensors stored in files by the Node-Red application.

Finally, I have expressed the challenges for applying such

solution, and as a bonus, I put more idea applicable to such

IoT device which can carried out in future research.

REFERENCES

[1] K. Lu, J. Karlsson, A. S. Dahlman, B. A. Sjoqvist, and

S. Candefjord, “Detecting driver sleepiness using

consumer wearable devices in manual and partial

automated real-road driving,” IEEE Transactions on

Intelligent Transportation Systems, pp. 1–10, 2021.

[2] A. Kassem, R. Jabr, G. Salamouni, and Z. K. Maalouf,

“Vehicle black box system,” 2008 2nd Annual IEEE

Systems Conference, 2008.

[3] “ESP8266,” ESP8266v Espressif Systems. [Online]:

https://www.espressif.com/en/products/socs/esp8266.

[Accessed: 03-Jan-2022].

[4] “SW-420 Vibration Sensor Module,” Components101.

[Online]. Available:

https://components101.com/sensors/sw-420-vibration-

sensor-module. [Accessed: 03-Jan-2022].

[5] “GT-U7 GPS modules.” [Online]. Available:

https://images-na.ssl-images-

amazon.com/images/I/91tuvtrO2jL.pdf. [Accessed: 03-

Jan-2022].

[6] “Node-Red,” Node-Red Org. [Online]. Available:

https://nodered.org/. [Accessed: 03-Jan-2022].

[7] “TinyGPS++: arduiniana,”.[Online]. Available:

http://arduiniana.org/libraries/tinygpsplus/. [Accessed:

10-Jan-2022].

https://github.com/alsahlawi/blackbox/blob/main/blackbox.ino
https://github.com/alsahlawi/blackbox/blob/main/blackbox.ino

