SMART CLASSROOM

Automatic Attendance and Classroom Environmental Monitoring

by

Ana Paula Cardoso Ferraz

EEM 602 – Internet of Things Professor: Dr. Mohab Mangoud

> University of Bahrain College of Engineering Bahrain January 2022

ABSTRACT

The objective of this project was to create a prototype of an application of the Internet of Things in education. The traditional attendance roll call is a time-consuming task and if automated can give the instructor time to focus on other teaching activities. An RFID RC522 module was used to implement an automatic attendance system. To maintain the right physical environment and ensure effective learning a relative humidity and temperature sensor DHT11 was used to monitor the classroom environment and inform if the values were out of range. Both sensors were connected to an Arduino MKR GSM 1400 and data was sent to Arduino IoT cloud for monitoring. The Arduino sketch is explained, IoT cloud setup steps and solutions to challenges faced are explained in this report.

CONTENTS

ABSTRACT	ii
LIST OF FIGURES	iv
CHAPTER 1 Introduction	6
1.1 Motivation	6
1.2 Objectives	6
1.3 Project Structure	7
CHAPTER 2 Board and Sensors Information	8
2.1 Arduino MKR GSM 1400	8
2.2 DHT11 – Digital Relative Humidity and Temperature Sensor	10
2.3 RFID-RC522	11
CHAPTER 3 Arduino Code	12
3.1 Libraries and Definitions	12
3.2 Setup13	
3.3 Main function - Loop	14
3.4 DHT sensor function	15
CHAPTER 4 IoT Cloud	16
4.1 Setting up the Cloud	16
4.2 Dashboard	25
4.3 Exporting data	27
CHAPTER 5 Conclusion	29
References	30

LIST OF FIGURES

Figure 1-1 - Project Flowchart	7
Figure 1-3 - Final project prototype	7
Figure 2-1 - Arduino MKR GSM 1400	8
Figure 2-2 - Arduino MKR GSM 1400 Pinout	9
Figure 2-3 - DHT11 Digital relative humidity and temperature sensor	. 10
Figure 2-4 - Illustration of humidity and temperature data transmission [4]	. 10
Figure 2-5 - RFID Module, cards and key fobs	. 11
Figure 2-6 - SPI communication connections	. 11
Figure 3-1 - Libraries and Definitions	. 12
Figure 3-2 - Setup function	. 13
Figure 3-3 - Main function - loop	. 14
Figure 3-4 - Temperature and Humidity function	. 15
Figure 4-1 - Sign in to Arduino	. 16
Figure 4-2 - Arduino Create Agent Installation	. 16
Figure 4-3 - Arduino Web Editor	. 17
Figure 4-4 – Classic offline Arduino 1.8.18 installed on laptop	. 17
Figure 4-5 - IoT Cloud and Web Editor	. 18
Figure 4-6 - Things Menu	. 18
Figure 4-7 - My thing – SIM	. 19
Figure 4-8 - Configure a new Device	. 20
Figure 4-9 - Associate or set up a new device	. 20
Figure 4-10 - Add a new variable	. 20
Figure 4-11 - Name and select variable type	. 21
Figure 4-12 - Example of temperature variable of floating point number type	. 21
Figure 4-13 - Network configuration	. 23
Figure 4-14 – Wifi Network configuration	. 23
Figure 4-15 – GSM Network Configuration	. 23
Figure 4-16 - Editing sketch tab or open full editor	. 24
Figure 4-17 - SIM (Subscriber Identity Module) information	. 24
Figure 1-18 - Serial Monitor Test Messages	. 24
Figure 4-18 – Dashboards' Menu	. 25

Figure 4-19 - Adding widets to dashboard	25
Figure 4-20 - Creating widgets from variables	
Figure 4-22 - Dashboard for Mobile View	
Figure 4-23 – Final Arduino IoT Cloud Dashboard	
Figure 4-24 - Download Historic Data	
Figure 4-25 - Selecting variables to download history	

CHAPTER 1 Introduction

1.1 Motivation

The Smart classroom aims to bring students and instructors closer together, it helps the instructor to teach more efficiently and makes the environment more convenient for teaching and learning [1].

Taking attendance traditionally (roll call) is a time-consuming task, if automated the instructor can focus on other teaching activities. There are many technologies being used for automatic attendance: RFID, NFC, Smartphone with Bluetooth, Biometric (fingerprint or face recognition) [2]. In this project RFID reader module and RFID cards will be used to implement an automatic attendance system.

The classes are conducted inside a confined space and is difficult to attend a lecture if the environment is too hot or too cold. To achieve effective learning, the right physical environment inside the classroom should be maintained. There are many types of sensors being used in the Smart Classroom to measure air quality, light, temperature, humidity, acoustics, and radiation [3]. The Relative Humidity and Temperature sensor (DHT11) will be used in this project to monitor the temperature and humidity and inform if the values are out of range.

1.2 Objectives

- Simulation of an automatic attendance using RFID tags
- RFID readings to be recorded in an online attendance registry
- Acquire temperature and relative humidity data from classroom
- IoT sensors data to be sent to a cloud to be displayed in a graph

1.3 Project Structure

The RFID module scans the cards/tags and sends the information to the Arduino MKR GSM 1400 board using SPI bus communication. The DHT11 sensor acquires the calibrated temperature and relative humidity data and sends to the board through pin 2. More detailed information about each sensor and the Arduino MKR GSM 1400 board are mentioned in Chapter 2. The Arduino board sends data to cloud via GSM 850 MHz and connects to the MQTT broker (mqtts-sa.iot.arduino.cc:8883).

The project data flow can be seen at Figure 1-1 and the final project prototype at Figure 1-2.

Figure 1-1 - Project Flowchart

Figure 1-2 - Final project prototype

CHAPTER 2

Board and Sensors Information

For this project the following components were used:

- Arduino MKR GSM 1400
- DHT11 Digital Relative Humidity and Temperature Sensor
- RFID-RC522 Radio Frequency Identification Module
- Arduino IoT Cloud platform

2.1 Arduino MKR GSM 1400

The MKR GSM 1400 is a great option for GSM / 3G connectivity projects. It uses Arm® Cortex®-M0 32-bit SAMD21 processor, it also features the powerful ublox SARA-U201 module and the ECC508 crypto-chip for security. [4]

- u-blox SARA U201 Enables GSM/3G connectivity for the MRK GSM 1400
 board Carrier frequency: GSM 850 MHz, E-GSM 1900 MHz, DCS 1800
 MHz, PCS 1900 MHz
- Cortex-M0 32-bit SAMD21 powerful low-power processor
- ATECC508 crypto chip makes sure data remains secure and private, can store up to 16 keys in an EEPROM array

Figure 2-1 - Arduino MKR GSM 1400

Figure 2-2 shows the pinout for Arduino MKR GSM 1400. In this project we used the following pins:

- VCC (3.3V) to power up RFID module and DHT11 sensor
- GND ground for RFID and DHT11 sensor
- D2 digital pin 2 for DHT11 data
- D8 digital pin 8 MOSI
- D9 digital pin 9 SCK
- D10 digital pin 10 MISO
- D11 digital pin 11 SDA (SS)
- D11 digital pin 12 SCL (RST)

Figure 2-2 - Arduino MKR GSM 1400 Pinout

2.2 DHT11 – Digital Relative Humidity and Temperature Sensor

DHT11 outputs a calibrated digital signal. It applies exclusive digital-signal-collectingtechnique and humidity sensing technology, assuring its reliability and stability. Its sensing elements are connected with 8-bit single-chip computer. Every sensor of this model is temperature compensated and calibrated in accurate calibration chamber and the calibration-coefficient is saved in type of programme in OTP memory, when the sensor is detecting, it will cite coefficient from memory. Small size & low consumption & long transmission distance (100m) enables DHT11 to be suited in all kinds of harsh application occasions. Single row packaged with four pins, making the connection very convenient. [4]

Figure 2-3 - DHT11 Digital relative humidity and temperature sensor

DATA=16 bits RH data+16 bits Temperature data+8 bits check-sum						
Example: MCU has received 40	bits data from DHT11 a	IS				
<u>0010 0001</u>	0000 0000	0001 1010	0000 0000	<u>0011 1011</u>		
Integral part of RH	Decimal part of RH	Integral part of T	Decimal part of T	check sum		
Remarks: The decima	al part of RH and T is al	ways 0000 0000.				
Here we convert inte	gral part of RH from bir	nary system to decima	l system,			
<u>0010 0001</u> →	33					
Binary system Decimal system, RH=33%RH						
Here we convert integral part of T from binary system to decimal system,						
<u>0001 1010</u> →	26					
Binary system	Decimal system, T=26	Celsius				
Sum=0010 0001+0000 000	0+0001 1010+0000 000	0= <u>0011_1011</u>				
Check-sum=the last 8 bits	of Sum=0011 1011					

Figure 2-4 - Illustration of humidity and temperature data transmission [4]

The Smart Classroom

2.3 RFID-RC522

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56 MHz [5]. The module can support I2C, SPI (used in this project), UART and has an RFID card and key fob. It is commonly used in attendance systems and other person/object identification applications.

Figure 2-5 - RFID Module, cards and key fobs

The SPI (Serial Peripheral Interface) communication was used for the RFID module, it uses 4 pins from the Arduino board:

- SCK Serial Clock (output from board) pin 9
- MISO Master In Slave Out (data output from receiver) pin 10
- MOSI Master Out Slave In (data output from board) pin 8
- SS Slave Select (output from board indicate data is being sent) pin 11

Figure 2-6 - SPI communication connections

CHAPTER 3

Arduino Code

This session is dedicated to explaining the main parts of the Arduino Code. The full code is available at the Appendix.

3.1 Libraries and Definitions

Before the start of the code, the libraries need to be included in the program. The pin numbers that are physically connected to the Arduino board are defined. The instances of the RFID receiver (mfrc522) and the DHT sensor (dht) that will be used for the data acquisition are created. A variable called student is created, which is a two-dimensional array of strings that stores the student's name and the associated RFID tag ID.

Figure 3-1 - Libraries and Definitions

The Smart Classroom

3.2 Setup

The **setup** () function is executed only once when the board is powered up or when the reset button is pressed. The serial connection is initialized with a baud rate of 9600. The DHT sensor acquisition calls the function **begin** () to start the acquisition.

Some Arduino IoT Cloud functions are called to initialize properties, begin the connection, set the debug message levels and to print any debug information.

```
void setup() {
    // Initialize serial and wait for port to open:
    Serial.begin(9600);
    //while (!Serial);
    // This delay gives the chance to wait for a Serial Monitor without blocking if none is found
    delay(1500);
    dht.begin();
    // Defined in thingProperties.h
    initProperties();
    // Connect to Arduino IoT Cloud
    ArduinoCloud.begin(ArduinoIoTPreferredConnection);
    setDebugMessageLevel(2);
    ArduinoCloud.printDebugInfo();
    delay(4);
}
```

Figure 3-2 - Setup function

The Smart Classroom

3.3 Main function - Loop

The **loop** () function in Arduino includes the begin of the SPI communication and the mfrc522 initialization. At first, these two initializations were done at the setup phase, but were moved to the loop due to a bug when the Arduino Cloud is updated [7]. It changes pin 10 to input, breaking the SPI communication. The solution was to initialize the SPI communication on every loop to reset pin 10 to output mode.

```
void loop() {
 SPI.begin();
 mfrc522.PCD_Init();
 if ( mfrc522.PICC_IsNewCardPresent()) {
   if (mfrc522.PICC_ReadCardSerial()) {
     String content = "":
     byte letter;
     for (byte i = 0; i < mfrc522.uid.size; i++)</pre>
     {
       content.concat(String(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "));</pre>
       content.concat(String(mfrc522.uid.uidByte[i], HEX));
     //Serial.println(content.substring(1));
     content.toUpperCase();
     for (int i = 0; i < 6; i++) {
       if (content.substring(1) == student[i][0])
       {
         msg_Attendance = "Attendance Recorded for Student: " + student[i][1];
       3
     Serial.print(msg_Attendance);
   }
 }
 dht_sensor_getdata();
 delay(500);
 ArduinoCloud.update();
```

Figure 3-3 - Main function - loop

After the initialization of the mfrc522, the function PICC_IsNewCardPresent () is called. In case a new card is detected, the function PICC_ReadCardSerial () reads the ID information from the RFID card. The ID is a variable of type string called content. It is converted to upper case to be compared with the array of student IDs stored in the definition part of the program. When the ID read from the card matches a student from the record, the attendance is recorded and stored in the variable msg_Attendance.

The dht_sensor_getdata () function is called, more detailed information in the section 3.4. A short delay of 500 ms is introduced before calling the ArduinoCloud.update() function. This function sends all four variables to the cloud: temperature, humidity, msg_Attendance and msgTempHum.

3.4 DHT sensor function

The function **dht_sensor_getdata** () was created to read the humidity and temperature data from the DHT11 sensor. The dht.h library imports the functions **readHumidity** () and **readTemperature** ().

The if-else conditional checks for the thresholds of low temperature (20°C) and high temperature (27°C) and then sends a message to the dashboard. This could be implemented with an actuator (to turn on or off the air conditioner) or an alarm in the real classroom.

```
void dht_sensor_getdata()
{
  float hm = dht.readHumidity();
  Serial.print(F("Humidity "));
  Serial.println(hm);
  float temp = dht.readTemperature();
  Serial.println(temp);
  humidity = hm;
  temperature = temp;
  if (temp > 27) {
    msgTempHum = "Temperature = " + String (temperature) + " Humidity = " + String(humidity) + " -> Temperature High ";
  }
  else if (temp < 20) {
    msgTempHum = "Temperature = " + String (temperature) + " Humidity = " + String(humidity) + " -> Temperature Low ";
  }
  else {
    msgTempHum = "Temperature = " + String (temperature) + " Humidity = " + String(humidity) + " -> All ok ";
  }
}
```

Figure 3-4 - Temperature and Humidity function

CHAPTER 4 IoT Cloud

This chapter focus on the IoT Cloud platform used to acquire the data from the Arduino board.

4.1 Setting up the Cloud

To connect to the Arduino IoT Cloud, first we need to create an account or sign in as shown in Figure 4-1.

 Arduino SSC ↔ C ▲ login.ard ← 	x +	DaFupWxvZZUu3RpZNkgcmhleW5Qb 🕶 ስ 🖈 🖡 📮
	Sign in to Arduino Username or Email * aninha.ferrar@gmail.com	
	Password * Forgot your password?	
	SIGN IN Don't have an account yet? Create one.	
	Or sign in with G Google (7 Facebook & Apple	

Figure 4-1 - Sign in to Arduino

To use the Web-based editor, that has all cores and libraries already installed, we need to install the Create Agent Plugin as shown in Figure 4-2. This agent will recognize the boards connected to the computer via USB. [4]

Figure 4-2 - Arduino Create Agent Installation

Once in the Web Editor page (Figure 4-3) we can see the board connected/disconnected, edit our code and upload when done.

🔍 🔍 💿 Ardu	ino Editor × +		~
← → C 🗎 cr	eate.arduino.cc/editor/anaferraz/c6cb0a26-c	8a7-445c-a75e-c83d14c9206b	🗯 👰 E
	×	SIM_dec18a	
> EDITOR	NEW SKETCH	✓ → -★ Arduino MKR GSM 1400 ▼ GO TO IOT CLOUD	
Sketchbook	SEARCH SKETCHBOOK Q	SIM_dec18a.ino ReadMe.adoc thingProperties.h Secret	-
⊞ Examples	ORDERING BY LAST MODIFIED	1 #include <spi.h> 2 #include dMFRC522.h> 3 #include "thingProperties.h"</spi.h>	к и К и
💾 Libraries	🗈 SIM_dec18a 🔘	4 #include "DHT.h" 5 #define DHTpin 2	三
्- Monitor	Blink_copy	6 #define DHTTYPE DHT11 7 #define SS_PIN 11 8 #define RST PIN 12	
Reference	Node_TempHumd_dec18a	<pre>9 MFRC522 mfrc522(SS_PIN, RST_PIN); 10</pre>	
(7) Help	AWS_IoT_WiFi_copy	11 v String student[6][2] = { 12 {"90 17 34 37", "Ahmed"},	
0	MyGSMControl_nov16a	13 {"D3 AA D0 45", "Mubarak" }, 14 {"52 98 81 39", "Najeeba" },	
¦¦¦ Preferences	Untitled_nov16a	15 {"71 E4 AE 20", "Ghadeer" }, 16 {"E3 72 52 1A", "Fatema" },	
C Features usage	Remote_Controlled_Lights_oct26a	17 {"91 39 45 20", "Jawaher" } 18 }; 19 DHT dht/DHTnin DHTTYPE\:	
	🖺 Untitled_oct26a	20 21 • void setup() {	
	Turn_Light_on_oct26a	22 // Initialize serial and wait for port to open:	
	Blink_MKR1010		
			¢
CO CLOUD			

Figure 4-3 - Arduino Web Editor

However, there are other two options available:

- Classic offline Arduino IDE 1.8.13 (Integrated Development Environment) as in Figure 4-4– This was used for local sensor troubleshooting
- New Arduino IDE 2.0 has new features like debugging, code highlighting and auto complete, which is currently in beta stage.

sketch_dec29a Arduino 1.8.18	
sketch_dec29a	
<pre>void setup() { // put your setup code here, to run once:</pre>	
}	
<pre>void loop() { // put your main code here, to run repeatedly:</pre>	
}	
1 Arduino MKR GSM 1400 on /dev/cu.usbmodem1420	1

Figure 4-4 - Classic offline Arduino 1.8.18 installed on laptop

To select the IoT Cloud menu or Web Editor we can click at the top right button near the profile picture.

Figure 4-5 - IoT Cloud and Web Editor

Once we select the IoT cloud Menu, there are a few options available, but in this project, we will focus on:

- Things
- Dashboards
- Devices

Once we select Things on top right (Figure 4-5) the following menu shown on Figure 4-6 appears. You can click to Create Thing from scratch or select an existing Thing.

O IOT CLOUD	Things	Dashboards	Devices	Integrations	Templates	UPGRADE PLAN	 8
Things						CREATE THING	
						All device types	
Name		Device		Variables		Last sync	
Remote Controllec	l Lights	ASSOCIATE	DEVICE	control_R	GB +6	09 Nov 2021 10:33:	Feedback
SIM		MyGSM Arduino MKR	GSM 1400	msg_Atte	ndance +4	18 Dec 2021 21:51:	B
Node_TempHumd		Ana Arduino MKR	WiFi 1010	msg Ten	nperature +1	18 Dec 2021 21:09:	

Figure 4-6 - Things Menu

This project's Thing is called SIM and we can see all components on Figure 4-7:

- Setup
 - Step 1 Device we can associate a device to our Thing
 - Step 2 Add variables
 - Step 3 Change the network settings
- Sketch write the sketch or open the full editor, and connect to the Serial Monitor.
- Serial Monitor Can be used to communicate with our device and troubleshoot our code

O IOT CLOUD				··· 8
SIM			Thing ID: 5f584b39-23dd-4bae-99	47-a6ae872db8ff
Setup		Sketch	Serial Monitor	
Variables Name ↓	Last Value La:	ADD st Update	Device	
<pre>Humidity float humidity;</pre>	38 30	Dec 2021 14:34:44	ID: 3600f4b1-c39e-48cd Type: Arduino MKR GSM 1 Status: Offline	l-ab7a-3 (ြ) 400
□ led bool led;	true 30	Dec 2021 12:07:16	ත ද්ට Change Detach	
msg_Attendance String msg_Attendance;	Attendance 30	Dec 2021 11:57:21		
msgTempHum String msgTempHum;	Temperature 30	Dec 2021 14:34:44	Network	
<pre>Temperature float temperature;</pre>	23 30	Dec 2021 13:45:41	APN: prepay PIN: ···· Username: arduino Password: ······	
			രാ Change	

Figure 4-7 - My thing - SIM

A new Thing won't have a device configured, so the first step is to click and select device as displayed on Figure 4-8. Any device previously used in the IoT cloud can be associated or a new device can be set up as shown in Figure 4-9.

Figure 4-8 - Configure a new Device

Figure 4-9 - Associate or set up a new device

For this project we associated the device Arduino MKR GSM 1400 to the Thing. The second step is to add the Variables as shown in Figure 4-10.

Figure 4-10 - Add a new variable

Once you click to add a variable, you need to select the variable name, type, permission, update policy and threshold. In this project 5 variables were created:

- Humidity to store and display the relative humidity value on the dashboard
- Temperature to store and display the room temperature on the dashboard
- msg_Attendance to display the student attendance, name and time
- msgTempHum to display the temperature and humidity and any warnings
- led this LED was used for quick troubleshooting to check board/cloud connection

The variable permission can be:

- Read & Write variable can work both as input and output, the data can be sent from the device to the cloud and vice versa
- Read only variable can work only as output, the data can be sent only from the device to the cloud

The variable update policy can be:

- On Change: the variable will be updated to the cloud whenever the change in value is greater than or equal to the set threshold
- Periodically: the variable will be updated to the cloud each time the number of seconds set is elapsed

The basic variable types used in this project were:

- Boolean true or false (LED)
- Floating point number Numbers with decimals (temperature and humidity)
- Character String words and sentences (msg_Attendance and msgTempHum)

Add variable	
_{Name} Temperature	
Sync with other Things 🕧	
Şelect variable type	
Alexa compatible Sasic types Energy	
Light and color Size and motion Time	
Boolean eg. true	
Character String eg. 'Hello'	
Floating Point Number eg. 1.55	
Integer Number eg. 1	
On change O Periodically	
The sector of a	

Figure 4-11 - Name and select variable type

	_	-
Add variable		
Name		
Temperature		
Sync with other Things (
Floating Point Number eg. 1.55	-	
Declaration		
<pre>float temperature;</pre>		i
Variable Permission 👔		
Pood & Write Pood Oply		
C Read & Write C Read Only		
Variable Update Policy 👔		
On change Periodically		
Every		
5	s	

Figure 4-12 - Example of temperature variable of floating point number type

After setting up all variables, the third step is to add network credentials in the configure Network menu as shown in Figure 4-13.

Networ	ĸ
Enter your n connect you	etwork credentials to r device.
രാ Configure)

Figure 4-13 - Network configuration

In this project we used the Arduino SIM card that has credentials as shown in Figure 4-15. In the project proposal the board suggested was the Arduino MRK Wi-Fi 1010. In case that device is selected the network configuration will be different as shown in Figure 4-14. The local Wi-Fi name must not include spaces.

Configure ne	etwork
Your will find these network para in your sketch, and your device the network once the sketch will	ameters in the secret ta vill be able to connect to be uploaded.
Wi-Fi Name *	
Password *	0
Secret Key *	ý
	SAVE

Figure 4-14 – Wifi Network configuration

Configure network
Your will find these network parameters in the secret tab in your sketch, and your device will be able to connect to the network once the sketch will be uploaded.
APN *
prepay.pelion
PIN *
0000
Username *
arduino
Password *
arduino 🌮
SAVE

Figure 4-15 – GSM Network Configuration

After setting up device, adding variables and configuring the network, the sketch is added as shown in Figure 4-16. The sketch can be edited at this tab but the full editor has more functionalities and was used in this project. A small part of the code is automatically updated by Arduino IoT Cloud based on the information added in the first three steps.

© © 101	CLOUD	Things	Dashboards	Devices	Integrations	Templates	UPGRAI	DE PLAN	 8
	SIM					Thing ID: 5f584	4b39-23dd-4bae-9947-a6a	ae872db8ff	
	Setup			Sketc	h	S	erial Monitor		
	No associa	ated device	found			Oper	n full editor	Ç	
	<pre>1 #include <spi.h 2 #include <mfrc5 3 #include "thing 4 #include "DHT.h 5 #define DHTpin 6 #define MTTYPE 7 #define RST_PIN 8 #define RST_PIN 9 MFRC522 mfrc522 10 11• String student[12 {"90 17 34 37 13 {"D3 AA D0 45 14 {"S2 98 81 39 15 {"71 E4 AE 20 16 {"E3 72 52 1A 17 {"91 39 45 20 18 };</mfrc5 </spi.h </pre>	> 22.h> Propertie 2 DHT11 11 12 (SS_PIN, 6][2] = { ", "Ahmed ", "Mubac ", "Ghade ", "Ghade ", "Jawah	<pre>s.h" RST_PIN); " }, ak" }, ba" }, er" }, er" }</pre>						Feedback

Figure 4-16 - Editing sketch tab or open full editor

SIM_dec18a.ino	ReadMe.adoc	thingProperties.h	Secret	•	
> WHAT IS THE SECRET TAB?					K 7 K 2
SECRET_APN		prepay.pelion			h
SECRET_PIN	SECRET_PIN				11
SECRET_USERNAME		arduino			1
SECRET_PASSWORD		arduino			4

Figure 4-17 - SIM (Subscriber Identity Module) information

```
***** Arduino IoT Cloud - configuration info *****
Device ID: 3600f4b1-c39e-48cd-ab7a-34393743045c
Thing ID: 5f584b39-23dd-4bae-9947-a6ae872db8ff
MQTT Broker: mqtts-sa.iot.arduino.cc:8883
Humidity 42.00
Temperature 23.00
SIM card ok
```

Figure 4-18 - Serial Monitor Test Messages

4.2 Dashboard

The dashboard is the last part of the IoT Cloud set up and we can click to build a dashboard as shown in Figure 4-19:

OO IOT CLOUD	Things Dashboards	Devices Integra	ations Templates	UPGRADE PLAN	 8
	Dash	boards			
Dashboards				BUILD DASHBOARD	
				All dashboards 🔹	
Name		Last modified	Owned by		
BlackBox Dashboa	ard	22 Dec 2021 18:31:13	alsahlawi		eedback
MKR GSM 1400		28 Dec 2021 14:43:48			۲
Remote Controlled	d Lights	15 Dec 2021 09:47:47			
Remote Temperate	ure - To Edit	17 Dec 2021 20:06:38			
TempHumid		18 Dec 2021 20:31:23			

Figure 4-19 – Dashboards' Menu

To populate our dashboard, we need to add widgets as shown in Figure 4-20 or add things and then select the variables as shown in Figure 4-21:

	Switch	Widget Settings
WIDGETS THINGS		Name Switch
Q Search widgets		Hide widget frame
Scheduler		Linked Variable
2.5 Value	Switch	source variable to display its value.
Status	OFF	CO Link Variable
Gauge	Example Data	Switch Labels
Percentage		Show ON/OFF labels
LED.		
Ø Мар		
0.00 Chart		
I		DONE

Figure 4-20 - Adding widets to dashboard

Figure 4-21 - Creating widgets from variables

In this project we added seven widgets, LED button, Humidity and Temperature gauges, Humidity and Temperature charts, temperature and humidity message and attendance message. There are two type of dashboard views: the mobile view (Figure 4-22) and desktop view (Figure 4-23).

1:17 ±	Attendance
MKR GSM 1400	Tue 28 Dec
	Attendance Recorded for Student: Ahmed
LED	15:26
	Attendance Recorded for Student: Ahmed
Imidity Temperature	15:33
38 22	Attendance Recorded for Student: Mubarak
0 100 0 6	16:08
15D 7D 1D 1H LIV	Attendance Recorded for Student: Mubarak
ς	42 16:33
	40 Attendance Recorded for Student: Mubarak
	38 16:59
29. Dec 08:00 16	Attendance Recorded for Student: Mubarak
emperature	<u>س</u> م 19:21
15D 7D 1D 1H LIV	Attendance Recorded for Student' Mubarak
	²³ 20:37
ΛΓ	22.5
	22 Type a message
	21.5

Figure 4-22 - Dashboard for Mobile View

	MKF	GSM 1400	Shared with:
Humidity	Humidity	Serial Monitor	
	70	Temperature = 23.00 Humidity = 43.00 15:15 Temperature = nan Humidity = nan 15:20	3
	30 0 44 100	Temperature = 24.00 Humidity = 42.00 15:20 Temperature = 24.00 Humidity = 45.00 15:20	2
15:00 15:	30	Temperature = 24.00 Humidity = 44.00 15:21	1
Temperature 15 D 7 D 1 D 1 H	LIVE	Attendance	
	30	Attendance Recorded for Student: Gnadeer	14:44
		Attendance Recorded for Student' Mubarak	1.10.000
15:00 15:3	22 0 60	Attendance Recorded for Student: Nubarak	14:44

Figure 4-23 – Final Arduino IoT Cloud Dashboard

4.3 Exporting data

The data can be exported from the cloud using the Download Historic Data option (Figure 4-24) at the dashboard.

Figure 4-24 - Download Historic Data

The download historic data has the option of selecting which variables we want to download, and the period as shown in Figure 4-25. This is useful if we want to use the data for further analysis.

Download historic data						
Q Search variable						
All Things	▼ 15/12/2021 📋 to 29/12/2021	Ē				
Variable	Туре 🗸					
msgTempHum SIM	Character String Read & Write					
SIM msg_Attendance	Character String Read & Write					
Humidity SIM	Floating Point Number Read Only					
SIM	Floating Point Number Read Only					
led _{SIM}	Boolean Paad & Write					
4 variables selected	SELECT DATA SOUR	CE				

Figure 4-25 - Selecting variables to download history

In Figure 4-26 you can see an example of the attendance data that was received by email and downloaded as CSV file. The readme.txt file contains the variable names, period requested and a message wishing us to "Have fun!".

	1	2	3	4		5	
126	2022-01-09T16:07:22.433Z	Attendance	Recorded for :	Student: A	hmed		
127	2022-01-09T16:07:23.225Z	Attendance	Recorded for	Student: A	hmed		
128	2022-01-09T16:26:03.140Z	Attendance	Recorded for	Student: N	lubarak		
129	2022-01-09T16:26:10.696Z	Attendance	Recorded for	Student: N	ajeeba		
130	2022-01-09T16:26:26.186Z	Attendance	Recorded for	Student: Ja	awaher		
131	2022-01-09T16:26:28.228Z	Attendance	Recorded for :	Student: F	atema		
132	2022-01-09T16:26:31.281Z	Attendance	Recorded for :	Student: G	ihadeer		
133	2022-01-09T16:27:06.421Z	Test					
134	2022-01-09T16:27:09.769Z	Test					
135	2022-01-09T16:27:45.005Z	Attendance	Recorded for	Student: F	atema		
136	2022-01-09T16:27:54.252Z	Attendance	Recorded for	Student: Ja	awaher		
137	2022-01-09T16:27:59.020Z	Attendance	Recorded for	Student: G	ihadeer		
138	2022-01-09T16:28:04.421Z	Attendance	Recorded for	Student: A	hmed		
139	2022-01-09T16:28:07.102Z	Attendance	Recorded for	Student: N	lubarak		· ·
140	2022-01-09T16:29:26.657Z						😑 😑 📄 readme.txt
141	2022-01-09T16:29:29.322Z						Arduino IoT Cloud historic data
142	2022-01-09T16:49:51.380Z	Attendance	Recorded for :	Student: A	hmed		
143	2022-01-09T16:51:19.286Z	test					variables:
144	2022-01-09T16:51:21.786Z	Attendance	Recorded for :	Student: A	hmed		name: msg_Attendance
145	2022-01-09T16:51:22.617Z	Attendance	Recorded for :	Student: A	hmed		thingName: SIM
146	2022-01-09T16:51:32.956Z	Attendance	Recorded for	Student: N	lubarak		from: 2021-12-26T00:002
147	2022-01-09T16:51:36.992Z	Attendance	Recorded for	Student: A	hmed		0. 2022-01-03123.33.332
148	2022-01-09T16:51:46.873Z	Attendance	Recorded for	Student: G	hadeer		Have fun! :)
149	2022-01-09T16:51:51.442Z	Attendance	Recorded for	Student: F	atema		
150	2022-01-09T16:51:55.988Z	Attendance	Recorded for :	Student: Ja	awaher		

Figure 4-26 – Example of CSV historical data received by email

CHAPTER 5 Conclusion

In this project, a prototype of an automatic attendance system and classroom environmental monitoring was created. This IoT application in education can save valuable time to the teacher and make sure the classroom environment is optimum for the teaching and learning experience. The RFID RC522 module was used to implement the automatic attendance and the DHT11 was used to monitor the relative humidity and temperature of classroom. In case the values were out of range, it informed the user with a message. This could be improved in the future by implementing an alarm or an actuator to turn on/off the air conditioner. Both sensors were connected to an Arduino MKR GSM 1400 and data was sent to Arduino IoT cloud.

The initial plan mentioned in the project proposal was to use an Arduino MKR Wi-Fi 1010, but it was damaged unfortunately while setting up the AWS cloud. Before the damage, there were some issues with the Wi-Fi connection because the network had spaces in the name. It was decided to replace the Wi-Fi to GSM and AWS to Arduino IoT Cloud. Some of the challenges faced included the RFID and DHT working separately but not together. After troubleshooting locally using the serial monitor, the prototype wouldn't connect the cloud. After investigating all possibilities, the issue was pin 10 used in SPI communication for the RFID module. The Arduino IoT Cloud update would break the SPI communication and the RFID module wouldn't work. The solution implemented was to move the SPI.begin() function to the loop to reset all the pins before the ArduinoCloud.update() function.

The project was published at the <u>Arduino Project Hub</u> [8] for easy visualisation and knowledge sharing. Many of the lessons learned in this Project will be used in my teaching practice. I have plans to introduce IoT applications in my embedded systems course and suggest final year project to students.

References

- [1] J. Faritha Banu, R. Revathi, M. Suganya and N. R. Gladiss Merlin, "IoT based Cloud integrated smart classroom for smart and a sustainable campus," *Procedia Computer Science*, vol. 172, pp. 77-81, 2020.
- [2] M. K. Saini and N. Goel, "How smart are smart classrooms? A review of smart classroom technologies," *ACM Computing Surveys*, vol. 52, no. 6, 12 2019.
- [3] S. Trilles, P. Juan, S. Chaudhuri and A. B. V. Fortea, "Data on CO2, temperature and air humidity records in Spanish classrooms during the reopening of schools in the COVID-19 pandemic," *Data in Brief*, vol. 39, 12 2021.
- [4] Arduino, "MKR GSM 1400 Overview," [Online]. Available: https://docs.arduino.cc/hardware/mkr-gsm-1400. [Accessed Dec 2021].
- [5] Aosong, "Datasheet DHT11," [Online]. Available: https://www.electronicoscaldas.com/datasheet/DHT11_Aosong.pdf. [Accessed Dec 2021].
- [6] NXP, "MFRC522 datasheet," [Online]. Available: https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf. [Accessed Dec 2021].
- [7] Arduino, "Forum," [Online]. Available: https://forum.arduino.cc/t/arduinocloudupdate-doesnt-work-for-me/633852/4. [Accessed Dec 2021].
- [8] A. Ferraz, "Automatic Attendance and Classroom Environmental Monitoring," [Online]. Available: https://create.arduino.cc/projecthub/anaferraz/automaticattendance-and-classroom-environmental-monitoring-2496bd. [Accessed Jan 2022].