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Neural Network Intrusion Detection System for
MQTT-based IoT Network

Abstract

We explore the application of neural network in cyber security in the field of loT. Specifically, we
apply neural networks to build an intrusion detection system IDS by using a recently published
dataset in IEEE. The data set is obtained from a benchmark MQTT protocol-based sensors
network.
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Objective
The objective of this project is to build an artificial neural network Intrusion Detection System for MQTT-
based IoT network.

Introduction

Security in the of internet of things is currently having a growing research attention. loT devices are
battery and resource constraint. As such, they only use resource constrained protocols to achieve their
communication. Among the resource constrained communication protocols used for loT are CoAP, MQTT,
and others. Current best security practices and protocols such as TLS are usually hard to integrate with
such protocols, as they tend to require advanced processing which would render such protocols are no
longer resource constrained. Therefore, loT traffic tends to be unencrypted. This makes a network
vulnerable to eavesdrop and intrusion. As such there have been massive efforts to implement strong
intrusion detection systems in an loT environment to detect hackers and their malicious activities.
Identifying such activities is quite a challenging task. An algorithm is required to learn and understand a
pattern to determine if its benign or malicious.

Currently, research is focused towards introducing advanced artificial intelligence and machine learning
technologies in the security of 10T to help detect malicious activities in a network. Such technologies are
implemented in the form of an intrusion detection system monitoring a network environment that has
loT or other devices. An IDS is supposed to identify hackers in a system to give firewalls a signal to block
their activity.

One of the major problems facing researchers in developing an artificially intelligent IDS for loT systems
is the scarcity of dataset to train their algorithms. Hanan et al. in their paper contributed to the field by
making a large dataset available in IEEE Dataset website for training of artificially intelligent IDS. The
authors’ dataset is specifically extracted from a network environment in which there are loT sensors and
a camera that communicate with each other through MQTT protocol. As such, this dataset is to specifically
train intelligent IDS to detect attacks in an MQTT environment. They tested multiple machines learning
classification algorithm. They are the following:

= Logistic Regression

= k-Nearest Neighbors

= Gaussian Naive Bayes

= Decision Trees

= Random Forests

= Support Vector Machine (linear and RBF kernel)

The data that were used to do the training and testing are features extracted from PCAP network packet
scanning software. The extracted packet features are classified in one of three types:

e Packet-based features

e Unidirectional flow-based features

e Bidirectional flow-based features

The only difference between them is the features which they use as inputs. The way they are organized
are shown in next table. Packet based only considers features that are packets. Unidirectional based only
considers features that are relating to the flow data. Bidirectional based is same as unidirectional except



FINAL

Tables taken from [1]

Data . Uni-  Bi- |
Feature Description Packet
Type flow  flow
ip_src Text Source IP Address v v v
ip_dest Text Destination IP Address v v v
protocol Text Last layer protocol v
ttl Integer Time to live v
ip_len Integer Packet Length v
ip_flag_df Binary | Don’t fragment IP flag v
ip_flag_mf Binary | More fragments IP flag v
ip_flag rb Binary Reserved IP flag v
prt_sre Integer Source Port v v v
prt_dst Integer Destination Port v v v
Transport Layer protocol
proto Integer PETCP /%DIE) v v
tep_flag res Binary Reserved TCP flag v
tep_flag_ns Binary Nonce sum TCP flag v
Congestion Window
tep_flag_cwr Binary v
p-as Y Reduced TCP flag
tep_flag_ecn Binary ECN Echo TCP flag v
J Table El continued
Data .. Uni- Bi- |
Feature Type Description Packet a Aow
tep_flag_urg Binary Urgent TCP flag o
tep_flag ack Binary A(:kll()wli_‘(}_lgi:;rlcllt TCP -
tep_flag_push Binary Push TCP flag N
tep_flag_reset Binary Reset TCP flag e
tep_flag svn Binary | Synchronization TCP flag o
tep_flag_fin Binary Finish TCP flag e
lets Intese Number of Packets in the v -
num_pkts nteger Aow
mean_iat Decimal | Average inter arrival time W *
std_1at Decimal .St:_-uldard d'c‘.-']a,t._]on of o *
inter arrival time
min_iat Decimal I'v-llmrnum_mter arrival v -
time
max iat Decimal Maximum inter arrival v *
time
mun_bytes Integer Number of bytes 1./ *
num_psh_flags Integer Number of push flag W *
num_rst_flags Integer Number of reset flag o *
num_urg_flags Integer Number of urgent flag e *
mean_pkt_len Decimal | Awerage packet length o *
std_pkt_len Decimal Standard deviation packet - N
length
min_pkt_len Decimal | Minimum packet length v
max_pkt_len Decimal | Maximum packet length v
mqtt_messagetype | Integer MQTT message type v
matt_messagelength| Binary MQTT message length s
matt_flag uname Binary | User Name MQTT Flag o
matt_flag_passwd Binary Password MQTT flag s
maqtt_flag retain Binary Will retain MQTT flag '
matt_flag_qos Integer Will QoS MQTT flag e
maqtt_Hag willag Binary Will Hag MOQTT flag v
maqtt_fag clean Binary Clean MQTT flag v
matt_fHag_reserved | Binary Reserved MOQTT flag 1./
1 if the instance
is_attack Binary represents an attaclk, 0 x x =
otherwise.
*

represented as two features in the biflow features file (forward fwd and
backward bwd)
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in some cases, it has flow in both directions represented. Each type-based feature is in a separate excel
sheet and is treated exclusively. Each excel sheet contains no less than 30000 data extracted. In addition
to having the features, an output is dedicated to the single output of the IDS which can be thought of as
a binary number (0 or 1) which indicates if the packet is an attack or not.

Due to technical difficulties with the code, we limited the scope of our work only to unidirectional flow
data and bidirectional flow data.

Each dataset from the above consists of four types of packets. One normal packet and the other four are
attacks which are:

e Aggressive Scan (Scan A) — Done by N-map software used to simulate network traffic

e User Datagram Protocol UDP scan (Scan SU) — done by

e Sparta SSH brute-force (Sparta) — Sparta is a penetration testing software used in this attack
e MAQRR brute-force attack (MQTT_BF)

In this project, we continue on the work of Hanen and use their dataset to build an artificial neural
network-based IDS. We will use backpropagation technique to make the training process more efficient.
We will then visualize our results and finally cross validate.

The dataset had the setup displayed in the figure below. Paper [1] describes it in further detail. There are
12 sensors in the network, one camera, one hacker, an MQTT broker server, and a camera.
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Figure taken from [1]
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Procedure and Design

Two codes will be written to train two different neural networks. The first code is a python code. The
second approach is using MATLAB neural network application. MATLAB was used for the sakes of trying.

The code is actually taken from GitHub. It is published by the authors of paper [1] along with their data
set. The code does automatically almost everything required by this assignment question. The way it
works is it first extracts the x and y data from the dataset which is a big data set containing around 31000
columns of data. Then, it shuffles the data and divides part of it for training and the other part for testing.
Then it initializes the classification method to call the classification instance and start the training and
testing respectively. Finally, the code prints all the outputs into “.csv’ folders.

One more important thing to mention about the code is that the input features dataset of x are strings
not a quantity. The relation of strings rather than numbers to an output is quite a challenge. What needs
to happen is we need to encode those strings and after training the neural network we decode them back
again if we need do. The encoding process is also included within the code that we use. It automatically
encodes the data before assigning them to x. That is why, when we use MATLAB as we will see later, the
inputs are already encoded.

Despite the code being complete and consistent of almost everything we need, it does not have an neural
network classifier. The only classifiers it has are the ones mentioned in the introduction used by the
original authors. Therefore, the code has been modified by removing the machine learning algorithms
used by the authors because they are not needed anymore and writing the part that will perform the
neural network. The added part is as shown below.

# @- Nueral Net
ann_classifier = MLPClassifier(solver='sgd', alpha=le-5, hidden_layer_sizes=(8,8,7, 2), random_state=1)
classify_sub(ann_classifier,

X_train, y_train,

X_test, y_test,

confusion_matrix_folder + prefix + '_cm_ANN.csv',

summary_folder + prefix + '_summary_ann.csv',

"ANN',

verbose)

The above code kept diverging. For this reason, there is one little modification that has been done. The
alpha constant was raised to 10. This made the neural network converge with very good results. However,
the running time was very slow. It took around more than 45 minutes to run.

The code basically constructs a neural network using the ‘sklearn’ library in python. The neural network is
a classification type neural network. The solver that is selected is ‘sgd’ which stands for stochastic gradient
decent. This algorithm optimizes the neural network parameters until it reaches optimal
hyperparameters. The hidden layers are four layers with 8, 8, 7, and 2 activation functions respectively.
The activation function is kept as default which is a ‘relu’ activation function.

The ‘classify_sub’ function is a function written by the authors of paper [1] and code developers to
perform the classification and train the selected algorithm. The results of the python code are displayed
in the results section.
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The code in appendix A was run to display the results in the results section. The outputs that is display
are:

e Accuracy matrix
e Confusion matrix
e Cross Validation

The accuracy matrix is the main result. It consists of: Recall, Precision, and F1-Score. They are calculated
as follows:
TP

TP +FP

TP
TP +FN
_ 2TP
" 2TP+FP +FN

Precision =

Recall =

F1

Where TP is true positive, FP is false positive, FN is false negative. The results also show ‘accuracy’ which
is calculated as follows

TP+TN

Overall Accuracy = W

Where TP is true positive, TN is true negative, P is positive, and N is negative.
It performs multiple iterations to train the neural network. In each iteration

The second approach to solve this problem was to prepare the x and y data in “.csv’ folders. That was done
using the same code of the authors of [1]. However, the classifications and their algorithms are entirely
omitted. Then, the x and y data were trained via MATLAB neural network application.

Results

Running the code gave the following results

Python

The python code of the others was modifying and used for our results. However, the code seemed to have
difficulties in processing the “Packet” data. As such, only bidirectional flow and unidirectional flow
datasets were used to test the neural network.

The data sets that we used we shuffled and split into two segments. One segment is kept for training
which is the larger one, representing 75% of all data. The other segment is kept for testing, which is the
smaller one, representing 25% of all data. The part of the code that does this operation is the following

x_train, x_test, y_train, y_test = train_test_split(x, v,
test_size = 0.25,
random_state = 42)
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precision recall fl-score | support
Benign 0.974475 | 0.999418 | 0.986789 1719
Scan A 0.991957 | 0.922693 | 0.956072 401
Scan SU 1 0.988789 | 0.994363 446
Sparta 1 1 1 2823
MQTT_BF | 0.995859 | 0.992094 | 0.993973 2909
accuracy 0.992769
macro avg | 0.992458 | 0.980599 | 0.986239 8298
weighted | 0.992872 | 0.992769 | 0.992725 8298
avg
Confusion matrix
Benign Scan A | ScanSU | Sparta | MQTT_BF
Benign 3436 0 0 0 0
Scan A 26 684 87 0 0
Scan SU 101 31 314 0 0
Sparta 0 0 0 5647 0
MQTT_BF 40 72 0 1 5662
Unidirectional Flow
precision recall fl-score | support
Benign 0.928417 1 0.96288 3437
Scan A 0.969125 | 0.708908 | 0.818841 797
Scan SU 0.88668 1 0.939937 446
Sparta 1 1 1 5647
MQTT_BF |1 0.981295 | 0.990559 | 5774
accuracy 0.978883
macro avg | 0.956844 | 0.938041 | 0.942443 | 16101
weighted 0.980052 | 0.978883 | 0.97806 | 16101
avg
Confusion matrix
Benign Scan A Scan SU | Sparta MQTT_BF
Benign 3436 0 0 0 0
Scan A 26 684 87 0 0
Scan SU 101 31 314 0 0
Sparta 0 0 0 5647 0
MQTT_BF | 40 72 0 1 5662
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There are two common methods of validating the neural network to reach hyperparameters:

e Cross-validation method (K-folds)
¢ Holdout validation method (Dropout Rate)

In the above python code, the method that was used is cross-validation (k-fold) with 5 number of folds.
Nevertheless, it is also worth mentioning that the k-fold method involves repeating the process of training
the network for the number of k-fold times specified, which is in our case equal to five. At the end, the
average of all data is taken as our result. In the next code, where we use MATLAB instead, the method
that will be used for validation is holdout validation method.

MATLAB

MATLAB has better and easier ways of visualizing data. This can make the process of trial and error easier.
As part of the project, MATLAB as well as python was tested out. However, the data preparation and
encoding are the only part which were left to Python. Again, the original authors code was modified such
that the code returns the data that we need in .csv files that will be used in MATLAB, in the next stage.
This was done by using the main function and adding the following lines of code before deleting the
training and testing variables.

np.savetxt('x_train.csv',x_train,delimiter=",")
np.savetxt('x_test.csv', x_test, delimiter='",")
np.savetxt('y_train.csv', y_train, delimiter=",’
np.savetxt('y_test.csv', y_test, delimiter=',")

The above line produces four .csv folders however, in MATLAB, since there is already a functionality to
specify the percentage of training and testing data, and the percentage of validation data in addition to
that, there is not needed to have a separate folder for training and testing. We combined ‘x’ folders
together and ‘y’ folders together, as a single matrix. This was done in MATLAB command window in the
same directory of the .csv folder.

>> yl=load('y_test.csv');
>> y2=load('y_train.csv');
>>y=[y1;y2];

>> yl=load('y_test.csv');
>> y2=load('y_train.csv');
>>y=[y1;y2];

>>z=[x y];

The two above steps can be applied to both bidirectional flow and unidirectional flow. However, we will
limit MATLAB to bidirectional flow. As the main intention is to test MATLAB’s performance on neural
networks.



FINAL

4\ Neural Clustering (nctool)

= >
Select Data
What inputs define your clustering problem?
Get Data from Workspace Summary
Input data to be clustered. Inputs 'z’ is a 41492x30 matrix, representing static data: 41492 samples of 30
¥ Inputs: 2 ol = elements,
Samples are: )W Matrix columns @ Bl Matrix rows

Want to try out this tool with an example data set?

Load Example Data Set

® To continue, click [Next].

& Neural Network Start W Welcome *pack | % Next 9 Cancel

Figure — clustering neural network application

The number of sizes of two-dimensional map was set to 100 after a number of trail and errors. The number

of epochs was made equal to 100 epochs. Each epoch by default in MATLAB has a number of 200
iterations.

4\ Neural Network Training (... — X

Neural Network

Input Layer Output
30 Eﬂn 100 '
|
Algorithms |

Training: Batch Weight/Bias Rules (trainbu)
Performance: Mean Squared Error (mse) |
Calculations: MATLAB

Progress
Epoch: 0 200iterations | 200
Time: 0:01:26
Plots
SOM Topology (plotsamitop)
SOM Meighbor Connections ~ (plotsomnc)
SOM Meighbor Distances [plotsomnd)
SOM Input Planes (plotsomplanes)
50M Sample Hits otsomhits)

SOM Weight Positions (plotsompos)

Plot Interval: ' 100 epochs

& Maximum epoch reached.

@ Stop Train ng ® Cancel

Figure — training window
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The application that was selected is the pattern recognition neural network because it can also be used
for classification problems which is what we are dealing with in our case.

4

, Select Data
i 4 ‘What inputs and targets define your fitting problem?
Get Data from Workspace Summary
Input data to present to the network.

Inputs X' is a 29x41492 matrix, representing static data: 41492 samples of 29
¥ Inputs:

X wl| .. elements.
Taiget data dehring desired network aitat Targets Y' is a 1x4 1492 matrix, representing static data: 41492 samples of 1
element.
@ Targets: ¥ il
Samples are: © [l Matrix columns (5] Matrix rows

Want to try out this tool with an example data set?
Load Example Data Set

B To continue, click [Next].

@ Neural Network Start i Welcome * Back % Mext D Cancel

Figure — selecting the datasets in neural fitting application

Then, we partitioned the data into training, validation, and testing data. Notice that before in the python
code we selected 75% training, 25% testing, and as for the validation we used cross-validation by k-fold

method. Here, the case is different because the validation method is different. That is why we allocated
75% for testing, 15% for validation, and 10% for testing.

10
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ok Neural Fitting (nftool -

Validation and Test Data
Set aside some samples for validation and testing.

Select Percentages Explanation
& Randomly divide up the 41492 samples: & Three Kinds of Samples:
|
@ Training: ™ 31119 samples | ® Training:
@ Validation: 15% 6224 samples  These are presented to the network during training, and the network is
® Testing: 1% ~ 4149 samples  adjusted according to its error.
@ Validation:

These are used to measure network generalization, and to halt training when
generalization stops improving.

@ Testing:
These have no effect on training and so provide an independent measure of
network performance during and after training.

Restore Defaults

B Change percentages if desired, then dick [Next] to continue.

& Neural Network Start M Welcome ®Back % Next @ Cancel

Figure — allocating training, testing, and validation data percentages

The number of hidden neurons we kept as 30. It is an accepted rule of thumb to set the number of hidden
neutrals equal to the size of input plus output. Nevertheless, this still is a trial-and-error procedure.

<\ Neural Fitting (nftool) — pos 4\ Neural Network Training (nntraintool)  — W

Network Architecture
Set the number of neurons in the fitting network’s hidden layer.

Hidden Layer Recommendation . £ 4 o
: ; )
Define a fitting neural network. (fitnet) Retumn to this panel and change the number of neurans if the network does -;;}) -,—-J
ey e

Neural Network

Number of Hidden Neurons: 30 not perform well after training.
Algorithms
Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)

Performance: Mean Squared Error
Calculations:  MEX

Progress

Epoch: 1] l 85 iterations 1000
Time: 0:01:18
Performance: 130 _ 0.00
Gradient: 315 [NOGREEN | 1.00e-07

Mu: 0.00100 0.000100 1.00e+10
Restove Delaults Validation Checks: 0 6 6
Neural Network
Plots
Performance {plotperform)
Input
Training State  (plottrainstate)
» Error Histogram  (platerrhist)
Regression n

® Change settings if desired, then click [Next] to continue. Fit
@ Neural Metwork Start Wi Welcome ®Back  ®Net | O Concel Plot Interval | BT epochs

Figure — selecting number of hidden neurons e Ey——
®5top Training @ Cancel

Figure — the neural network
training window

The training optimization algorithm was selected as Levenberg-Marquardt which takes less time but more
memory. We needed a fast algorithm regardless of memory which is why we selected this algorithm.

11
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The results for 30 neurons are shown in Appendix B. However, the accuracy which can be seen from the
performance plot is not as desired. The curve does not converge to exactly zero. For this reason, to obtain
more satisfactory results, the number of neurons in the hidden layer was increased to 50. The results are
shown in the appendix B. In fact, the size of hidden neurons in Appendix B has been increased as follows
to see the results:

e 30 hidden neurons
e 50 hidden neurons
e 100 hidden neurons
e 500 hidden neurons

Please refer to appendix B to see the results visualization. The running time for 500 neurons was very
long. It took around 22 hours to train this neural network. At the end, it resulted in negligible
enhancement in performance. The optimum number of hidden neurons is 50.

Using MATLAB shows that increasing the number of hidden neurons after 50 only slightly increases
accuracy. It also reduces the speed of convergence. In the case of 500 hidden neurons, it took hours for
the neural network to complete training.

Discussion

The neural network in both cases showed quite high accuracy. However, when comparing it with the
results done by [1], some machine learning algorithms showed higher accuracy.

METHOD UNIDIRECTIONAL BIDIRECTIONAL
Linear Regression 98.23% 99.44%

K-NN 99.68% 99.9%

Decision Tree 99.96% 99.95%
Random Forest 99.95% 99.61%

Naive Bayes 78% 97.55%

SVM RBF Kernel 97.96% 96.61%

SVM Linear Kernel 82.6% 98.5%

The artificial intelligence neural network used in this project achieved the following overall accuracy.

METHOD UNIDIRECTIONAL BIDIRECTIONAL
Neural Networks 99.78% 99.27%

Although the accuracy is high, as mentioned other machine learning techniques achieved higher
accuracy. To achieve higher accuracy in neural networks, the following can be done with trial and error:

e Increase number of nodes
e Increase number of hidden layers
e Change parameters (activation function, Alpha, tolerance, ... etc.)

12
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Adjusting the network may increase or decrease accuracy. It may also change the speed at which such a
network converges. Trail and error can take really a long time. As future improvement, trial and error
may be avoided by constructing the neural network using heuristic methods, for example, use of neuro-
evolution. Also, another future improvement is to test the neural network on other dataset to observe

its performance on new attacks, as this is important given that a network expands and adopts new
technologies.

13
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Appendix A

This appendix shows the python code of this project.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

Created on Thu Aug 29 12:14:12 2019

@author: hananhindy
import pandas as pd
import numpy as np
import os

import argparse

import pdb as debugger

from sklearn.preprocessing import OneHotEncoder

##from sklearn.linear_model import LogisticRegression

##from sklearn.neighbors import KNeighborsClassifier

##from sklearn.svm import SVC, LinearSVC

##from sklearn.naive_bayes import GaussianNB

##from sklearn.tree import DecisionTreeClassifier

##from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.metrics import classification_report

#import neural network
from sklearn.neural_network import MLPClassifier

# Helper Function
def str2bool(v):
if v.lower() in ('yes', 'true’, 't', 'y', '1'):
return True
elif v.lower() in ('no’, 'false’, 'f', 'n’, '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')

#protocols = ['ARP', 'CDP', 'CLDAP', 'DATA', 'DNS', 'DTLS', 'DTP', 'ECHO', 'ICMP', 'ISAKMP','MDNS', 'NAT-
PMP', 'NBNS', 'NFS', 'NTP', 'PORTMAP', 'RADIUS', 'RIP', 'SRVLOC', 'SNMP', 'SSH', 'STP', 'TCP', 'UDP/,
'XDMCP', 'MQTT', 'MPEG_PMT', 'MP2T', '"MPEG_PAT', 'DVB_SDT']

#label_encoder = LabelEncoder().fit(protocols)

one_hot_encoder = None
def load_file(path, mode, is_attack = 1, label = 1, folder_name="'Ui/', sliceno = 0, verbose = True):

#global label_encoder
global one_hot_encoder

15
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Hattacker_ips =['192.168.2.5']

columns_to_drop_packet = ['timestamp', 'src_ip', 'dst_ip', 'ip_flags', 'tcp_flags', 'mqtt_flags']
columns_to_drop_uni = ['proto’, 'ip_src', 'ip_dst']
columns_to_drop_bi = ['proto’, 'ip_src', 'ip_dst']

if os.path.getsize(path)//10 ** 9 > 0:
x = np.zeros((0,0))
for chunk in pd.read_csv(path, chunksize=10 ** 6):
chunk.drop(columns = columns_to_drop_packet, inplace = True)
chunk = chunk[chunk.columns.drop(list(chunk.filter(regex="mqtt')))]

chunk = chunk.fillna(-1)
with open(folder_name + 'instances_count.csv','a') as f:
f.write('{}, {} \n'.format(path, chunk.shape[0]))

x_temp = chunk.loc[chunk['is_attack'] == is_attack]
x_temp.drop('is_attack’, axis = 1, inplace = True)
#x_temp|['protocol'] = label_encoder.transform(x_temp['protocol'])
if one_hot_encoder == None:

one_hot_encoder = OneHotEncoder(categorical_features=[0], n_values=30)
x_temp = one_hot_encoder.fit_transform(x_temp).toarray()

else:
x_temp = one_hot_encoder.transform(x_temp).toarray()

Xx_temp = np.unique(x_temp, axis = 0)

if x.size == 0:
X =X_temp
else:
X = np.concatenate((x, x_temp), axis = 0)
X = np.unique(x, axis = 0)
else:
dataset = pd.read_csv(path)

if mode == 1 or mode == 2:
dataset = dataset.loc[dataset['is_attack'] == is_attack]

# if is_attack == 0:
# dataset = dataset.loc[operator.and_(dataset['ip_src'].isin(attacker_ips) == False,
dataset['ip_dst'].isin(attacker_ips) == False)]
# else:
# dataset = dataset.loc[operator.or_(dataset['ip_src'].isin(attacker_ips),
dataset['ip_dst'].isin(attacker_ips))]
#
if mode ==0:
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dataset.drop(columns=[columns_to_drop_packet], inplace = True)
dataset = dataset[dataset.columns.drop(list(dataset.filter(regex="mqtt')))]
elif mode == 1:
dataset.drop(columns = columns_to_drop_uni, inplace = True)
elif mode == 2:
dataset.drop(columns = columns_to_drop_bi, inplace = True)

if verbose:
print(dataset.columns)

dataset = dataset.fillna(-1)

if mode ==0:
x = dataset.loc[dataset['is_attack'] == is_attack]
x.drop('is_attack’, axis=1, inplace=True)
#x['protocol'] = label_encoder.transform(x['protocol'])
if one_hot_encoder == None:
one_hot_encoder = OneHotEncoder(categorical_features=[0], n_values=30)
x = one_hot_encoder.fit_transform(x).toarray()
else:
x = one_hot_encoder.transform(x).toarray()
else:
x = dataset.values

with open(folder_name + 'instances_count.csv','a') as f:
f.write('all, {}, {} \n'.format(path, x.shape[0]))

X = np.unique(x, axis = 0)

with open(folder_name + 'instances_count.csv','a') as f:
f.write('unique, {}, {} \n'.format(path, x.shape[0]))

if (mode == 1 and x.shape[0] > 100000) or (mode == 2 and x.shape[0] > 50000):
temp = x.shape[0] // 10
start = sliceno * temp
end = start + temp - 1
x = x[start:end,:]
with open(folder_name + 'instances_count.csv','a') as f:
f.write('Start, {}, End, {} \n'.format(start, end))
elif mode == 0:
if x.shape[0] > 15000000:
temp = x.shape[0] // 400
start = sliceno * temp
end = start + temp - 1
x = x[start:end,:]
with open(folder_name + 'instances_count.csv','a') as f:
f.write('Start, {}, End, {} \n'.format(start, end))
elif x.shape[0] > 10000000:
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temp = x.shape[0] // 200

start = sliceno * temp

end = start + temp - 1

x = x[start:end,:]

with open(folder_name + 'instances_count.csv','a') as f:
f.write('Start, {}, End, {} \n'.format(start, end))

elif x.shape[0] > 100000:

temp = x.shape[0] // 10

start = sliceno * temp

end = start + temp - 1

X = x[start:end,:]

with open(folder_name + 'instances_count.csv','a') as f:
f.write('Start, {}, End, {} \n'.format(start, end))

y = np.full(x.shape[0], label)

with open(folder_name + 'instances_count.csv','a') as f:
f.write('slice, {}, {} \n'.format(path, x.shape[0]))

returnx, y

def classify_sub(classifier, x_train, y_train, x_test, y_test, cm_file_name, summary_file_name,
classifier_name, verbose = True):

classifier.fit(x_train, y_train)

pred = classifier.predict(x_test)

cm = pd.crosstab(y_test, pred)
cm.to_csv(cm_file_name)

pd.DataFrame(classification_report(y_test, pred, output_dict = True,
zero_division=0)).transpose().to_csv(summary_file_name)

if verbose:
print(classifier_name + ' Done.\n')

del classifier
del pred
del cm

def classify(random_state, x_train, y_train, x_test, y_test, folder_name, prefix ="", verbose = True):
confusion_matrix_folder = os.path.join(folder_name, 'Confusion_Matrix/')

summary_folder = os.path.join(folder_name, 'Summary/')

if os.path.isdir(confusion_matrix_folder) == False:
os.mkdir(confusion_matrix_folder)

if os.path.isdir(summary_folder) == False:
os.mkdir(summary_folder)
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# 0- Nueral Net

ann_classifier = MLPClassifier(activation="relu',solver='adam’, alpha=10,
hidden_layer_sizes=(8,8,9,10, 2), random_state=random_state)
# zip 1 > ann_classifier = MLPClassifier(activation="relu',solver='adam', alpha=0.1,
hidden_layer_sizes=(240,120), random_state=random_state)
#ann_classifier =  MLPClassifier(activation="tanh',solver='sgd', alpha=10, tol=0.00000001,
max_iter=3000, n_iter_no_change=5000, hidden_layer_sizes=(8,8,8),warm_start=True,

random_state=random_state,verbose=True)
classify_sub(ann_classifier,

x_train, y_train,
X_test, y_test,
confusion_matrix_folder + prefix + '_cm_ANN.csv',
summary_folder + prefix + '_summary_ann.csv',
'ANN',
verbose)

## #1- Linear
## linear_classifier = LogisticRegression(random_state = random_state)
## classify_sub(linear_classifier,

Hit x_train, y_train,

HH x_test, y_test,

HH confusion_matrix_folder + prefix + '_cm_linear.csv',
H# summary_folder + prefix + '_summary_linear.csv',
Hit 'Linear,

Hit verbose)

#it

H## #2- KNN

## knn_classifier = KNeighborsClassifier()
## classify_sub(knn_classifier,

HH x_train, y_train,

HH x_test, y_test,

Hi confusion_matrix_folder + prefix +'_cm_knn.csv',
Hi summary_folder + prefix + '_summary_knn.csv',
## 'KNN',

Hit verbose)

H#it

## #3- RBF SVM
## kernel_svm_classifier = SVC(kernel = 'rbf', random_state = random_state, gamma='scale')
## classify_sub(kernel_svm_classifier,

HH x_train, y_train,

HH x_test, y_test,

HH confusion_matrix_folder + prefix +'_cm_kernel_svm.csv',
HH summary_folder + prefix + '_summary_kernel_svm.csv',
Hit 'SVM',

HH verbose)

Hit

## #4- Naive Bayes
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## naive_classifier = GaussianNB()
## classify_sub(naive_classifier,

HH x_train, y_train,

HH x_test, y_test,

Hit confusion_matrix_folder + prefix +'_cm_naive.csv',

HHt summary_folder + prefix + '_summary_naive.csv',

H#it 'Naive',

Hit verbose)

H#

## #5- Decision Tree

H#Ht decision_tree_classifier = DecisionTreeClassifier(criterion = 'entropy', random_state =

random_state)
## classify_sub(decision_tree_classifier,

HH x_train, y_train,

Hit x_test, y_test,

Hit confusion_matrix_folder + prefix + '_cm_decision_tree.csv',
Hit summary_folder + prefix + '_summary_decision_tree.csv',
Hit 'Decision Tree',

H# verbose)

H#

## #6- Random Forest

Hit random_forest_classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy’,
random_state = random_state)

## classify_sub(random_forest_classifier,

HH x_train, y_train,

#it x_test, y_test,

Hit confusion_matrix_folder + prefix +'_cm_random_forest.csv',
Hit summary_folder + prefix + '_summary_random_forest.csv',
H#it 'Random Forest',

Hit verbose)

#Hit

## #7-Linear SVM
## svm_classifier = LinearSVC(random_state = random_state)
## classify_sub(svm_classifier,

HH x_train, y_train,

HH x_test, y_test,

HHt confusion_matrix_folder + prefix + '_cm_svm.csv',
HHt summary_folder + prefix + '_summary_svm.csv',
H# 'SVM',

Hit verbose)

if _name__=="__main__":

parser = argparse.ArgumentParser()
parser.add_argument('--mode’, type = int, default = 1)
parser.add_argument('--output', default="Classification_Bi')
parser.add_argument('--verbose', type = str2bool, default = True)

args = parser.parse_args()
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for slice_number in range(10):
prefix ="
if args.mode == 1:
prefix = 'uniflow_
elif args.mode == 2:
prefix = 'biflow_'

if args.verbose:
print('Starting Slice #: {}'.format(slice_number))
print('Start Classification')

random_state =0
folder_name ='{}_{}/'.format(args.output, slice_number)

if os.path.isdir(folder_name) == False:
os.mkdir(folder_name)

X, y = load_file(prefix + 'normal.csv',
args.mode,
0,0,
folder_name,
slice_number,
args.verbose)

x_temp, y_temp = load_file(prefix + 'scan_A.csv',
args.mode,
1,1,
folder_name,
slice_number,
args.verbose)

X = np.concatenate((x, x_temp), axis = 0)

y = np.append(y, y_temp)
del x_temp, y_temp

x_temp, y_temp = load_file(prefix + 'scan_sU.csVv',
args.mode,
1,2,
folder_name,
slice_number,
args.verbose)

X = np.concatenate((x, x_temp), axis = 0)

y = np.append(y, y_temp)
del x_temp, y_temp
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X_temp, y_temp = load_file(prefix + 'sparta.csv',
args.mode,
1,3,
folder_name,
slice_number,
args.verbose)

X = np.concatenate((x, x_temp), axis = 0)

y = np.append(y, y_temp)
del x_temp, y_temp

x_temp, y_temp = load_file(prefix + 'mqtt_bruteforce.csv',
args.mode,
1, 4,
folder_name,
slice_number,
args.verbose)

X = np.concatenate((x, x_temp), axis = 0)

y = np.append(y, y_temp)
del x_temp, y_temp

x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size = 0.25,
random_state = 42)

#Up till here, the x and y sets are created and ready for use

classify(random_state, x_train, y_train, x_test, y_test,
folder_name, "slice_{} no_cross_validation".format(slice_number), args.verbose)

kfold = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 0)

counter =0
for train, test in kfold.split(x, y):
classify(random_state, x[train], y[train], x[test], y[test],
folder_name, "slice_{} k {}".format(slice_number, counter), args.verbose)
counter +=1

del x
dely
del x_train
del x_test
del y_train
dely_test
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Appendix B

Results of 30 neurons

Gradient = 0025377, at epoch 85

> Mu = 0.0001, at epoch 85
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Results of 50 neurons

Gradient = 0.0048839, at epoch 105

Mu = 0.0001, at epoch 105
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Results for 100 hidden neurons size
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Mean Squared Error (mse)
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Results for 500 hidden neurons

Best Validation Performance is 0.00047297 at epoch 100
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Mean Squared Error (mse)
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Gradient = 0.031151, at epoch 186
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