
 

  

FINAL 
Neural Network Intrusion Detection System for 

MQTT-based IoT Network 

Jawaher Albanki 
20143551 

Abstract 
We explore the application of neural network in cyber security in the field of IoT. Specifically, we 

apply neural networks to build an intrusion detection system IDS by using a recently published 
dataset in IEEE. The data set is obtained from a benchmark MQTT protocol-based sensors 

network. 



 

1 
 

FINAL 

 

 

 

Table of Contents 
Objective ....................................................................................................................................................... 2 

Introduction .................................................................................................................................................. 2 

Procedure and Design ................................................................................................................................... 5 

Results ........................................................................................................................................................... 6 

Python ....................................................................................................................................................... 6 

Bidirectional Flow ................................................................................................................................. 7 

Unidirectional Flow ............................................................................................................................... 7 

MATLAB ..................................................................................................................................................... 8 

Discussion.................................................................................................................................................... 12 

References .................................................................................................................................................. 14 

Appendix A .................................................................................................................................................. 15 

Appendix B .................................................................................................................................................. 23 

 

  



 

2 
 

FINAL 

Objective 
The objective of this project is to build an artificial neural network Intrusion Detection System for MQTT-
based IoT network.  

Introduction 
Security in the of internet of things is currently having a growing research attention. IoT devices are 
battery and resource constraint. As such, they only use resource constrained protocols to achieve their 
communication. Among the resource constrained communication protocols used for IoT are CoAP, MQTT, 
and others. Current best security practices and protocols such as TLS are usually hard to integrate with 
such protocols, as they tend to require advanced processing which would render such protocols are no 
longer resource constrained. Therefore, IoT traffic tends to be unencrypted. This makes a network 
vulnerable to eavesdrop and intrusion. As such there have been massive efforts to implement strong 
intrusion detection systems in an IoT environment to detect hackers and their malicious activities. 
Identifying such activities is quite a challenging task. An algorithm is required to learn and understand a 
pattern to determine if its benign or malicious.  

Currently, research is focused towards introducing advanced artificial intelligence and machine learning 
technologies in the security of IoT to help detect malicious activities in a network. Such technologies are 
implemented in the form of an intrusion detection system monitoring a network environment that has 
IoT or other devices. An IDS is supposed to identify hackers in a system to give firewalls a signal to block 
their activity. 

One of the major problems facing researchers in developing an artificially intelligent IDS for IoT systems 
is the scarcity of dataset to train their algorithms. Hanan et al. in their paper contributed to the field by 
making a large dataset available in IEEE Dataset website for training of artificially intelligent IDS. The 
authors’ dataset is specifically extracted from a network environment in which there are IoT sensors and 
a camera that communicate with each other through MQTT protocol. As such, this dataset is to specifically 
train intelligent IDS to detect attacks in an MQTT environment. They tested multiple machines learning 
classification algorithm. They are the following: 

 Logistic Regression 
 k-Nearest Neighbors 
 Gaussian Naive Bayes 
 Decision Trees 
 Random Forests 
 Support Vector Machine (linear and RBF kernel) 

 
The data that were used to do the training and testing are features extracted from PCAP network packet 
scanning software. The extracted packet features are classified in one of three types: 

• Packet-based features 
• Unidirectional flow-based features 
• Bidirectional flow-based features 

 
The only difference between them is the features which they use as inputs. The way they are organized 
are shown in next table. Packet based only considers features that are packets. Unidirectional based only 
considers features that are relating to the flow data. Bidirectional based is same as unidirectional except  



 

3 
 

FINAL 

  Tables taken from [1] 



 

4 
 

FINAL 

in some cases, it has flow in both directions represented. Each type-based feature is in a separate excel 
sheet and is treated exclusively.  Each excel sheet contains no less than 30000 data extracted. In addition 
to having the features, an output is dedicated to the single output of the IDS which can be thought of as 
a binary number (0 or 1) which indicates if the packet is an attack or not. 
 
Due to technical difficulties with the code, we limited the scope of our work only to unidirectional flow 
data and bidirectional flow data. 

 
Each dataset from the above consists of four types of packets. One normal packet and the other four are 
attacks which are: 

• Aggressive Scan (Scan A) – Done by N-map software used to simulate network traffic 
• User Datagram Protocol UDP scan (Scan SU) – done by 
• Sparta SSH brute-force (Sparta) – Sparta is a penetration testing software used in this attack 
• MQRR brute-force attack (MQTT_BF) 

 
In this project, we continue on the work of Hanen and use their dataset to build an artificial neural 
network-based IDS. We will use backpropagation technique to make the training process more efficient. 
We will then visualize our results and finally cross validate.  

The dataset had the setup displayed in the figure below. Paper [1] describes it in further detail. There are 
12 sensors in the network, one camera, one hacker, an MQTT broker server, and a camera. 

 

Figure taken from [1] 

 

  



 

5 
 

FINAL 

Procedure and Design 
Two codes will be written to train two different neural networks. The first code is a python code. The 
second approach is using MATLAB neural network application. MATLAB was used for the sakes of trying. 

 The code is actually taken from GitHub. It is published by the authors of paper [1] along with their data 
set. The code does automatically almost everything required by this assignment question. The way it 
works is it first extracts the x and y data from the dataset which is a big data set containing around 31000 
columns of data. Then, it shuffles the data and divides part of it for training and the other part for testing. 
Then it initializes the classification method to call the classification instance and start the training and 
testing respectively. Finally, the code prints all the outputs into ‘.csv’ folders.  

One more important thing to mention about the code is that the input features dataset of x are strings 
not a quantity. The relation of strings rather than numbers to an output is quite a challenge. What needs 
to happen is we need to encode those strings and after training the neural network we decode them back 
again if we need do. The encoding process is also included within the code that we use. It automatically 
encodes the data before assigning them to x. That is why, when we use MATLAB as we will see later, the 
inputs are already encoded. 

Despite the code being complete and consistent of almost everything we need, it does not have an neural 
network classifier. The only classifiers it has are the ones mentioned in the introduction used by the 
original authors. Therefore, the code has been modified by removing the machine learning algorithms 
used by the authors because they are not needed anymore and writing the part that will perform the 
neural network. The added part is as shown below. 

 
 

The above code kept diverging. For this reason, there is one little modification that has been done. The 
alpha constant was raised to 10. This made the neural network converge with very good results. However, 
the running time was very slow. It took around more than 45 minutes to run. 

The code basically constructs a neural network using the ‘sklearn’ library in python. The neural network is 
a classification type neural network. The solver that is selected is ‘sgd’ which stands for stochastic gradient 
decent. This algorithm optimizes the neural network parameters until it reaches optimal 
hyperparameters. The hidden layers are four layers with 8, 8, 7, and 2 activation functions respectively. 
The activation function is kept as default which is a ‘relu’ activation function.  

The ‘classify_sub’ function is a function written by the authors of paper [1] and code developers to 
perform the classification and train the selected algorithm. The results of the python code are displayed 
in the results section. 



 

6 
 

FINAL 

The code in appendix A was run to display the results in the results section. The outputs that is display 
are: 

• Accuracy matrix 
• Confusion matrix 
• Cross Validation 

The accuracy matrix is the main result. It consists of: Recall, Precision, and F1-Score. They are calculated 
as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹1 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

Where TP is true positive, FP is false positive, FN is false negative. The results also show ‘accuracy’ which 
is calculated as follows 

𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹
𝑃𝑃 + 𝐹𝐹

 

Where TP is true positive, TN is true negative, P is positive, and N is negative.  

It performs multiple iterations to train the neural network. In each iteration 

The second approach to solve this problem was to prepare the x and y data in ‘.csv’ folders. That was done 
using the same code of the authors of [1]. However, the classifications and their algorithms are entirely 
omitted. Then, the x and y data were trained via MATLAB neural network application.  

Results 
Running the code gave the following results 

Python 
The python code of the others was modifying and used for our results. However, the code seemed to have 
difficulties in processing the “Packet” data. As such, only bidirectional flow and unidirectional flow 
datasets were used to test the neural network.  

The data sets that we used we shuffled and split into two segments. One segment is kept for training 
which is the larger one, representing 75% of all data. The other segment is kept for testing, which is the 
smaller one, representing 25% of all data. The part of the code that does this operation is the following 

        x_train, x_test, y_train, y_test = train_test_split(x, y,  
                                                            test_size = 0.25, 
                                                            random_state = 42) 

 



 

7 
 

FINAL 

Bidirectional Flow  
precision recall f1-score support 

Benign 0.974475 0.999418 0.986789 1719 
Scan A 0.991957 0.922693 0.956072 401 

Scan SU 1 0.988789 0.994363 446 
Sparta 1 1 1 2823 

MQTT_BF 0.995859 0.992094 0.993973 2909 
accuracy 

   
0.992769 

macro avg 0.992458 0.980599 0.986239 8298 
weighted 

avg 
0.992872 0.992769 0.992725 8298 

 

Confusion matrix 
 

Benign Scan A Scan SU Sparta MQTT_BF 
Benign 3436 0 0 0 0 
Scan A 26 684 87 0 0 

Scan SU 101 31 314 0 0 
Sparta 0 0 0 5647 0 

MQTT_BF 40 72 0 1 5662 
 

Unidirectional Flow  
precision recall f1-score support 

Benign 0.928417 1 0.96288 3437 
Scan A 0.969125 0.708908 0.818841 797 

Scan SU 0.88668 1 0.939937 446 
Sparta 1 1 1 5647 

MQTT_BF 1 0.981295 0.990559 5774 
accuracy 

   
0.978883 

macro avg 0.956844 0.938041 0.942443 16101 
weighted 
avg 

0.980052 0.978883 0.97806 16101 

Confusion matrix 
 

Benign Scan A Scan SU Sparta MQTT_BF 
Benign 3436 0 0 0 0 
Scan A 26 684 87 0 0 
Scan SU 101 31 314 0 0 
Sparta 0 0 0 5647 0 
MQTT_BF 40 72 0 1 5662 

 

  



 

8 
 

FINAL 

There are two common methods of validating the neural network to reach hyperparameters: 

• Cross-validation method (K-folds) 
• Holdout validation method (Dropout Rate) 

In the above python code, the method that was used is cross-validation (k-fold) with 5 number of folds. 
Nevertheless, it is also worth mentioning that the k-fold method involves repeating the process of training 
the network for the number of k-fold times specified, which is in our case equal to five. At the end, the 
average of all data is taken as our result.  In the next code, where we use MATLAB instead, the method 
that will be used for validation is holdout validation method.  

MATLAB 
MATLAB has better and easier ways of visualizing data. This can make the process of trial and error easier. 
As part of the project, MATLAB as well as python was tested out. However, the data preparation and 
encoding are the only part which were left to Python. Again, the original authors code was modified such 
that the code returns the data that we need in .csv files that will be used in MATLAB, in the next stage. 
This was done by using the main function and adding the following lines of code before deleting the 
training and testing variables. 

        np.savetxt('x_train.csv',x_train,delimiter=',') 
        np.savetxt('x_test.csv', x_test, delimiter=',') 
        np.savetxt('y_train.csv', y_train, delimiter=',') 
        np.savetxt('y_test.csv', y_test, delimiter=',') 

 

The above line produces four .csv folders however, in MATLAB, since there is already a functionality to 
specify the percentage of training and testing data, and the percentage of validation data in addition to 
that, there is not needed to have a separate folder for training and testing. We combined ‘x’ folders 
together and ‘y’ folders together, as a single matrix. This was done in MATLAB command window in the 
same directory of the .csv folder. 

>> y1=load('y_test.csv'); 
>> y2=load('y_train.csv'); 
>> y=[y1;y2]; 
>> y1=load('y_test.csv'); 
>> y2=load('y_train.csv'); 
>> y=[y1;y2]; 
>> z=[x y]; 

 

The two above steps can be applied to both bidirectional flow and unidirectional flow. However, we will 
limit MATLAB to bidirectional flow. As the main intention is to test MATLAB’s performance on neural 
networks. 

 



 

9 
 

FINAL 

 
Figure – clustering neural network application 

 
The number of sizes of two-dimensional map was set to 100 after a number of trail and errors. The number 
of epochs was made equal to 100 epochs. Each epoch by default in MATLAB has a number of 200 
iterations. 

 

 
Figure – training window 



 

10 
 

FINAL 

 

The application that was selected is the pattern recognition neural network because it can also be used 
for classification problems which is what we are dealing with in our case. 

 
Figure – selecting the datasets in neural fitting application 

 

Then, we partitioned the data into training, validation, and testing data. Notice that before in the python 
code we selected 75% training, 25% testing, and as for the validation we used cross-validation by k-fold 
method. Here, the case is different because the validation method is different. That is why we allocated 
75% for testing, 15% for validation, and 10% for testing.  



 

11 
 

FINAL 

 
Figure – allocating training, testing, and validation data percentages 

 
The number of hidden neurons we kept as 30. It is an accepted rule of thumb to set the number of hidden 
neutrals equal to the size of input plus output. Nevertheless, this still is a trial-and-error procedure. 

 
Figure – selecting number of hidden neurons 

 
Figure – the neural network 

training window 
 

The training optimization algorithm was selected as Levenberg-Marquardt which takes less time but more 
memory. We needed a fast algorithm regardless of memory which is why we selected this algorithm.  



 

12 
 

FINAL 

The results for 30 neurons are shown in Appendix B. However, the accuracy which can be seen from the 
performance plot is not as desired. The curve does not converge to exactly zero. For this reason, to obtain 
more satisfactory results, the number of neurons in the hidden layer was increased to 50. The results are 
shown in the appendix B. In fact, the size of hidden neurons in Appendix B has been increased as follows 
to see the results: 

• 30 hidden neurons 
• 50 hidden neurons 
• 100 hidden neurons 
• 500 hidden neurons 

Please refer to appendix B to see the results visualization. The running time for 500 neurons was very 
long. It took around 22 hours to train this neural network. At the end, it resulted in negligible 
enhancement in performance. The optimum number of hidden neurons is 50.  

Using MATLAB shows that increasing the number of hidden neurons after 50 only slightly increases 
accuracy. It also reduces the speed of convergence. In the case of 500 hidden neurons, it took hours for 
the neural network to complete training. 

 

Discussion 
The neural network in both cases showed quite high accuracy. However, when comparing it with the 
results done by [1], some machine learning algorithms showed higher accuracy.  

METHOD UNIDIRECTIONAL BIDIRECTIONAL 
Linear Regression 98.23% 99.44% 
K-NN 99.68% 99.9% 
Decision Tree 99.96% 99.95% 
Random Forest 99.95% 99.61% 
Naïve Bayes 78% 97.55% 
SVM RBF Kernel 97.96% 96.61% 
SVM Linear Kernel 82.6% 98.5% 

 

The artificial intelligence neural network used in this project achieved the following overall accuracy. 

METHOD UNIDIRECTIONAL BIDIRECTIONAL 
Neural Networks 99.78% 99.27% 

 

Although the accuracy is high, as mentioned other machine learning techniques achieved higher 
accuracy. To achieve higher accuracy in neural networks, the following can be done with trial and error: 

• Increase number of nodes 
• Increase number of hidden layers 
• Change parameters (activation function, Alpha, tolerance, … etc.) 



 

13 
 

FINAL 

Adjusting the network may increase or decrease accuracy. It may also change the speed at which such a 
network converges. Trail and error can take really a long time. As future improvement, trial and error 
may be avoided by constructing the neural network using heuristic methods, for example, use of neuro-
evolution. Also, another future improvement is to test the neural network on other dataset to observe 
its performance on new attacks, as this is important given that a network expands and adopts new 
technologies.  

  



 

14 
 

FINAL 

References 
[1] Hanan Hindy, Ethan Bayne, Miroslav Bures, Robert Atkinson3, Christos Tachtatzis, and Xavier 
Bellekens, “Machine Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-
IDS2020 Dataset)”, Selected Papers from the 12th International Networking Conference, 2020. 

[2] https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-
dataset  

[3] Hindy, H., Brosset, D., Bayne, E., Seeam, A.K., Tachtatzis, C., Atkinson, R.,Bellekens, X.: A taxonomy of 
network threats and the effect of current datasets on intrusion detection systems. IEEE Access, 2020. 

[4] https://python-course.eu/machine-learning/dropout-neural-networks-in-python.php  

[5]https://brilliant.org/wiki/backpropagation/#:~:text=Backpropagation%2C%20short%20for%20%22ba
ckward%20propagation,to%20the%20neural%20network's%20weights.  

  

  

https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset
https://python-course.eu/machine-learning/dropout-neural-networks-in-python.php
https://python-course.eu/machine-learning/dropout-neural-networks-in-python.php
https://brilliant.org/wiki/backpropagation/#:%7E:text=Backpropagation%2C%20short%20for%20%22backward%20propagation,to%20the%20neural%20network's%20weights
https://brilliant.org/wiki/backpropagation/#:%7E:text=Backpropagation%2C%20short%20for%20%22backward%20propagation,to%20the%20neural%20network's%20weights
https://brilliant.org/wiki/backpropagation/#:%7E:text=Backpropagation%2C%20short%20for%20%22backward%20propagation,to%20the%20neural%20network's%20weights


 

15 
 

FINAL 

Appendix A 
This appendix shows the python code of this project. 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Thu Aug 29 12:14:12 2019 
 
@author: hananhindy 
""" 
import pandas as pd 
import numpy as np 
import os 
import argparse 
import pdb as debugger 
 
from sklearn.preprocessing import OneHotEncoder 
##from sklearn.linear_model import LogisticRegression 
##from sklearn.neighbors import KNeighborsClassifier 
##from sklearn.svm import SVC, LinearSVC 
##from sklearn.naive_bayes import GaussianNB 
##from sklearn.tree import DecisionTreeClassifier 
##from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split, StratifiedKFold 
from sklearn.metrics import classification_report 
 
#import neural network 
from sklearn.neural_network import MLPClassifier 
 
# Helper Function 
def str2bool(v): 
    if v.lower() in ('yes', 'true', 't', 'y', '1'): 
        return True 
    elif v.lower() in ('no', 'false', 'f', 'n', '0'): 
        return False 
    else: 
        raise argparse.ArgumentTypeError('Boolean value expected.') 
 
#protocols = ['ARP', 'CDP', 'CLDAP', 'DATA', 'DNS', 'DTLS', 'DTP', 'ECHO', 'ICMP', 'ISAKMP','MDNS', 'NAT-
PMP', 'NBNS', 'NFS', 'NTP', 'PORTMAP', 'RADIUS', 'RIP', 'SRVLOC', 'SNMP',  'SSH', 'STP', 'TCP', 'UDP', 
'XDMCP', 'MQTT', 'MPEG_PMT', 'MP2T', 'MPEG_PAT', 'DVB_SDT'] 
#label_encoder = LabelEncoder().fit(protocols) 
 
one_hot_encoder = None 
 
def load_file(path, mode, is_attack = 1, label = 1, folder_name='Ui/', sliceno = 0, verbose = True): 
    #global label_encoder 
    global one_hot_encoder 



 

16 
 

FINAL 

     
    #attacker_ips = ['192.168.2.5'] 
     
    columns_to_drop_packet = ['timestamp', 'src_ip', 'dst_ip', 'ip_flags', 'tcp_flags', 'mqtt_flags'] 
    columns_to_drop_uni = ['proto', 'ip_src', 'ip_dst'] 
    columns_to_drop_bi = ['proto', 'ip_src', 'ip_dst'] 
     
    if os.path.getsize(path)//10 ** 9 > 0: 
        x = np.zeros((0,0)) 
        for chunk in pd.read_csv(path, chunksize=10 ** 6): 
            chunk.drop(columns = columns_to_drop_packet, inplace = True) 
            chunk = chunk[chunk.columns.drop(list(chunk.filter(regex='mqtt')))] 
                                      
            chunk = chunk.fillna(-1) 
         
            with open(folder_name + 'instances_count.csv','a') as f: 
                f.write('{}, {} \n'.format(path, chunk.shape[0])) 
                 
            x_temp = chunk.loc[chunk['is_attack'] == is_attack]    
            x_temp.drop('is_attack', axis = 1, inplace = True) 
            #x_temp['protocol'] = label_encoder.transform(x_temp['protocol']) 
            if one_hot_encoder == None: 
                 
                one_hot_encoder = OneHotEncoder(categorical_features=[0], n_values=30) 
                x_temp = one_hot_encoder.fit_transform(x_temp).toarray() 
            else: 
                x_temp = one_hot_encoder.transform(x_temp).toarray() 
             
            x_temp = np.unique(x_temp, axis = 0) 
             
            if x.size == 0: 
                x = x_temp 
            else: 
                x = np.concatenate((x, x_temp), axis = 0) 
                x = np.unique(x, axis = 0) 
    else: 
        dataset = pd.read_csv(path) 
     
        if mode == 1 or mode == 2: 
            dataset = dataset.loc[dataset['is_attack'] == is_attack] 
#            if is_attack == 0: 
#                dataset = dataset.loc[operator.and_(dataset['ip_src'].isin(attacker_ips) == False, 
dataset['ip_dst'].isin(attacker_ips) == False)] 
#            else: 
#                dataset = dataset.loc[operator.or_(dataset['ip_src'].isin(attacker_ips), 
dataset['ip_dst'].isin(attacker_ips))] 
#             
        if mode == 0: 



 

17 
 

FINAL 

            dataset.drop(columns=[columns_to_drop_packet], inplace = True) 
            dataset = dataset[dataset.columns.drop(list(dataset.filter(regex='mqtt')))] 
        elif mode == 1: 
            dataset.drop(columns = columns_to_drop_uni, inplace = True) 
        elif mode == 2: 
            dataset.drop(columns = columns_to_drop_bi, inplace = True) 
         
        if verbose:                  
            print(dataset.columns) 
         
        dataset = dataset.fillna(-1) 
                
        if mode == 0: 
            x = dataset.loc[dataset['is_attack'] == is_attack]    
            x.drop('is_attack', axis=1, inplace=True) 
            #x['protocol'] = label_encoder.transform(x['protocol']) 
            if one_hot_encoder == None: 
                one_hot_encoder = OneHotEncoder(categorical_features=[0], n_values=30) 
                x = one_hot_encoder.fit_transform(x).toarray() 
            else: 
                x = one_hot_encoder.transform(x).toarray() 
        else: 
            x = dataset.values 
     
    with open(folder_name + 'instances_count.csv','a') as f: 
        f.write('all, {}, {} \n'.format(path, x.shape[0])) 
     
    x = np.unique(x, axis = 0) 
 
    with open(folder_name + 'instances_count.csv','a') as f: 
        f.write('unique, {}, {} \n'.format(path, x.shape[0])) 
     
    if (mode == 1 and x.shape[0] > 100000) or (mode == 2 and x.shape[0] > 50000): 
            temp = x.shape[0] // 10 
            start = sliceno * temp 
            end = start + temp - 1  
            x = x[start:end,:]  
            with open(folder_name + 'instances_count.csv','a') as f: 
                f.write('Start, {}, End, {} \n'.format(start, end)) 
    elif mode == 0: 
        if x.shape[0] > 15000000: 
            temp = x.shape[0] // 400 
            start = sliceno * temp 
            end = start + temp - 1  
            x = x[start:end,:]  
            with open(folder_name + 'instances_count.csv','a') as f: 
                f.write('Start, {}, End, {} \n'.format(start, end)) 
        elif x.shape[0] > 10000000: 



 

18 
 

FINAL 

            temp = x.shape[0] // 200 
            start = sliceno * temp 
            end = start + temp - 1  
            x = x[start:end,:]  
            with open(folder_name + 'instances_count.csv','a') as f: 
                f.write('Start, {}, End, {} \n'.format(start, end)) 
        elif x.shape[0] > 100000: 
            temp = x.shape[0] // 10 
            start = sliceno * temp 
            end = start + temp - 1  
            x = x[start:end,:]  
            with open(folder_name + 'instances_count.csv','a') as f: 
                f.write('Start, {}, End, {} \n'.format(start, end)) 
 
             
    y = np.full(x.shape[0], label) 
     
    with open(folder_name + 'instances_count.csv','a') as f: 
        f.write('slice, {}, {} \n'.format(path, x.shape[0])) 
         
    return x, y 
 
def classify_sub(classifier, x_train, y_train, x_test, y_test, cm_file_name, summary_file_name, 
classifier_name, verbose = True): 
    classifier.fit(x_train, y_train) 
    pred = classifier.predict(x_test) 
     
    cm = pd.crosstab(y_test, pred) 
    cm.to_csv(cm_file_name)     
     
    pd.DataFrame(classification_report(y_test, pred, output_dict = True, 
zero_division=0)).transpose().to_csv(summary_file_name) 
     
    if verbose: 
        print(classifier_name + ' Done.\n') 
     
    del classifier 
    del pred 
    del cm 
     
def classify(random_state, x_train, y_train, x_test, y_test, folder_name, prefix = "", verbose = True): 
    confusion_matrix_folder = os.path.join(folder_name, 'Confusion_Matrix/')  
    summary_folder =  os.path.join(folder_name, 'Summary/')  
 
    if os.path.isdir(confusion_matrix_folder) == False: 
            os.mkdir(confusion_matrix_folder) 
    if os.path.isdir(summary_folder) == False: 
            os.mkdir(summary_folder) 



 

19 
 

FINAL 

 
    # 0- Nueral Net 
    ann_classifier = MLPClassifier(activation='relu',solver='adam', alpha=10, 
hidden_layer_sizes=(8,8,9,10, 2), random_state=random_state) 
    # zip 1 > ann_classifier = MLPClassifier(activation='relu',solver='adam', alpha=0.1, 
hidden_layer_sizes=(240,120), random_state=random_state) 
    #ann_classifier = MLPClassifier(activation='tanh',solver='sgd', alpha=10, tol=0.00000001, 
max_iter=3000, n_iter_no_change=5000, hidden_layer_sizes=(8,8,8),warm_start=True, 
random_state=random_state,verbose=True) 
    classify_sub(ann_classifier,  
                 x_train, y_train,  
                 x_test, y_test,  
                 confusion_matrix_folder + prefix + '_cm_ANN.csv',  
                 summary_folder + prefix + '_summary_ann.csv', 
                 'ANN', 
                 verbose) 
             
##    # 1- Linear 
##    linear_classifier = LogisticRegression(random_state = random_state) 
##    classify_sub(linear_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_linear.csv',  
##                 summary_folder + prefix + '_summary_linear.csv', 
##                 'Linear', 
##                 verbose) 
##        
##    # 2- KNN 
##    knn_classifier = KNeighborsClassifier() 
##    classify_sub(knn_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_knn.csv',  
##                 summary_folder + prefix + '_summary_knn.csv', 
##                 'KNN', 
##                 verbose) 
##     
##    #3- RBF SVM 
##    kernel_svm_classifier = SVC(kernel = 'rbf', random_state = random_state, gamma='scale') 
##    classify_sub(kernel_svm_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_kernel_svm.csv',  
##                 summary_folder + prefix + '_summary_kernel_svm.csv', 
##                 'SVM', 
##                 verbose) 
##     
##    #4- Naive Bayes 



 

20 
 

FINAL 

##    naive_classifier = GaussianNB() 
##    classify_sub(naive_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_naive.csv',  
##                 summary_folder + prefix + '_summary_naive.csv', 
##                 'Naive', 
##                 verbose) 
## 
##    #5- Decision Tree 
##    decision_tree_classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 
random_state) 
##    classify_sub(decision_tree_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_decision_tree.csv',  
##                 summary_folder + prefix + '_summary_decision_tree.csv', 
##                 'Decision Tree', 
##                 verbose) 
##     
##    #6- Random Forest 
##    random_forest_classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', 
random_state = random_state) 
##    classify_sub(random_forest_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_random_forest.csv',  
##                 summary_folder + prefix + '_summary_random_forest.csv', 
##                 'Random Forest', 
##                 verbose) 
## 
##    # 7- Linear SVM  
##    svm_classifier = LinearSVC(random_state = random_state) 
##    classify_sub(svm_classifier,  
##                 x_train, y_train,  
##                 x_test, y_test,  
##                 confusion_matrix_folder + prefix + '_cm_svm.csv',  
##                 summary_folder + prefix + '_summary_svm.csv', 
##                 'SVM', 
##                 verbose) 
     
if __name__ == "__main__": 
    parser = argparse.ArgumentParser() 
    parser.add_argument('--mode', type = int, default = 1) 
    parser.add_argument('--output', default='Classification_Bi') 
    parser.add_argument('--verbose', type = str2bool, default = True) 
 
    args = parser.parse_args() 



 

21 
 

FINAL 

     
     
    for slice_number in range(10): 
        prefix = '' 
        if args.mode == 1: 
            prefix = 'uniflow_'  
        elif args.mode == 2: 
            prefix = 'biflow_' 
         
        if args.verbose: 
            print('Starting Slice #: {}'.format(slice_number)) 
            print('Start Classification') 
             
        random_state = 0 
        folder_name = '{}_{}/'.format(args.output, slice_number) 
         
        if os.path.isdir(folder_name) == False: 
            os.mkdir(folder_name) 
             
        x, y = load_file(prefix + 'normal.csv',  
                         args.mode,  
                         0, 0,  
                         folder_name,  
                         slice_number, 
                         args.verbose) 
         
        x_temp, y_temp = load_file(prefix + 'scan_A.csv',  
                                   args.mode,  
                                   1, 1,  
                                   folder_name, 
                                   slice_number, 
                                   args.verbose) 
         
        x = np.concatenate((x, x_temp), axis = 0) 
        y = np.append(y, y_temp) 
        del x_temp, y_temp 
         
        x_temp, y_temp = load_file(prefix + 'scan_sU.csv',  
                                   args.mode,  
                                   1, 2,  
                                   folder_name, 
                                   slice_number, 
                                   args.verbose) 
         
        x = np.concatenate((x, x_temp), axis = 0) 
        y = np.append(y, y_temp) 
        del x_temp, y_temp 
                 



 

22 
 

FINAL 

        x_temp, y_temp = load_file(prefix + 'sparta.csv',  
                                   args.mode,  
                                   1, 3, 
                                   folder_name, 
                                   slice_number, 
                                   args.verbose) 
         
        x = np.concatenate((x, x_temp), axis = 0) 
        y = np.append(y, y_temp) 
        del x_temp, y_temp 
                 
        x_temp, y_temp = load_file(prefix + 'mqtt_bruteforce.csv',  
                                   args.mode, 
                                   1, 4,  
                                   folder_name, 
                                   slice_number, 
                                   args.verbose) 
         
        x = np.concatenate((x, x_temp), axis = 0) 
        y = np.append(y, y_temp) 
        del x_temp, y_temp 
 
         
                 
        x_train, x_test, y_train, y_test = train_test_split(x, y,  
                                                            test_size = 0.25, 
                                                            random_state = 42) 
 
        #Up till here, the x and y sets are created and ready for use 
         
        classify(random_state, x_train, y_train, x_test, y_test,  
                 folder_name, "slice_{}_no_cross_validation".format(slice_number), args.verbose) 
        
        kfold = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 0) 
         
        counter = 0 
        for train, test in kfold.split(x, y): 
            classify(random_state, x[train], y[train], x[test], y[test],  
                     folder_name, "slice_{}_k_{}".format(slice_number, counter), args.verbose) 
            counter += 1 
           
        del x 
        del y 
        del x_train 
        del x_test 
        del y_train 
        del y_test 



 

23 
 

FINAL 

Appendix B 
Results of 30 neurons 

 
 

 
 
 
 

 
 



 

24 
 

FINAL 

 
 

 
 

 
 
 
 

 
 

  



 

25 
 

FINAL 

Results of 50 neurons 

 

 
 
 

 



 

26 
 

FINAL 

 
 

 
 

  



 

27 
 

FINAL 

Results for 100 hidden neurons size 

 
 

 



 

28 
 

FINAL 

 

 
 

 

  



 

29 
 

FINAL 

Results for 500 hidden neurons 

after 
only 100 iterations of epoch 



 

30 
 

FINAL 

 
 

 



 

31 
 

FINAL 

 
 

 



 

32 
 

FINAL 

 
 

 


	Objective
	Introduction
	Procedure and Design
	Results
	Python
	Bidirectional Flow
	Unidirectional Flow

	MATLAB

	Discussion
	References
	Appendix A
	Appendix B

