Accredited

VABETA

Engineering
Accreditation

EENG 373

Commission

Communication Systems ||

Convolutional Codes

Prof. Mohab A. Mangoud

Professor of Wireless Communications
University of Bahrain, College of Engineering,

Department of Electrical and Electronics Engineering,
P.O. Box 32038, Isa Town,Kingdom of Bahrain
Office: +973 17876033 /6261

Email : mmangoud@uob.edu.bh
URL: http://mangoud.com

http://www.uob.bh/
mailto:mangoud@eng.uob.bh

Figure 10.1

Simplified models of digital communication system.
(a) Coding and modulation performed separately.

(b) Coding and modulation combined.

Discrete channel

r:"/"/"FF"/>>>>">">">-> F"F"F"F"—"""—""—" '|
| |
| |
. | |
Discrete Channel > Modulator Waveform > Detector Channel > User
source encoder | channel | decoder
| |
| |
- |
Noise
(a)
Discrete — Encoder/modulator |——mm Waveform ——————] Detector/decoder — User
source channel

Noise

code word. There are applications, however, where the message bits come in serially rather
than in large blocks, in which case the use of a buffer may be undesirable. In such situa-
tions, the use of[conpolutional codingmay be the preferred method. A convolutional coder
generates redundant bits by using modulo-2 convolutions, hence the name.

The encoder of a binary convolutional code with rate 17,] measured in bits per
symbol, may be viewed as a finite-state machine that consists of ap M-stage shift register|
with prescribed connections to[# modulo-2 adders;[and a multiplexer that serializes the
outputs of the adders. [An L-bit message jequence produces a coded output sequence of
length{#(L + M) bits] The code rate is therefore given by

L
= i 53
{ f L=) blts/symbol] (10.53)

Typically, we have L >> M. Hence, the code rate simplifies to

{ r&'% bits/symbol J (10.54)

Fan o

The constraint length of a convolutional code] expressed in terms of message bits, is defined
as the number of shifts over which a single message bit can influence the encoder output.
In an encoder with an M-stage shift register[the memory of the encoder equals M message
bits, and K = M + 1 shiftq are required for a message bit to enter the shift register and
finally come out. Hence, the|constraint length of the encoder is K|

{ Figure 10.134 shows a convolutional encoder with # = 2-and K = 3. Hence, theJ

code rate of this encoder is 1/2. The encoder of Flgure 10.134 operates on the incoming
message sequence, one bit at a time.

We may generate a binary convolutional code with rate k/n by using k separate shift
registers with prescribed connections to # modulo-2 adders, an input multiplexer and

an output multplexer, An example of such an encoder is shown in Figure 10,13},
wherﬁ), = 3, and the two shift regsters have K = T each, The code rate is I3,

this second example, the encoder processs the incoming message sequence tW Difs at 4
e,

Path 1

Modulo-2
adder
1T~ 4
Input Output
[M
[=
hp-tlop
¥, 8
Path 2
(a)
Flip-flop
3]
A 2’\
[
Input > I"/D Output
[
=
h 4 Modulo-2
adder

H)

(a) Constraint length-3, rate -% convolutional encoder.

(b) Constraint length-2, rate-% convolutional encoder.

A Rate 72 Convolutional
encoder

« Convolutional encoder (rate 2, K=3)

— 3 shift-registers where the first one takes the
incoming data bit and the rest, form the memory of

the encoder.

S

:

A

Input data bits ——— >
m

N

.

L U, { First coded bit

(Branch word)
Output coded bits
U,u,

u, { Second coded bit

Lecture 10

A Rate /2 Convolutional
encoder

Message sequence:m = (101)

Time Output Time Output

a ‘ (Branch word) ¢ ‘ (Branch word)

« —[Jolo] X—" 7 o —f0T1T0] " ¢

/—
r%
ﬁ/_

j4/T‘\
_\m

o —11]011 \6—'u632 . —0]1 ”igz
K/ |u2 ‘2

Lecture 10 7

A Rate 2 Convolutional
encoder

Time Output Time Output
Eg ‘ (Branch word) Eg ‘ (Branch word)
’/' A ul E ’/ A ul

o —fJol1] ¥—" 1" | o« —[dolo] ¥—"%5

m=(101) —{ Encoder —— U=(11 10 00 10 11)

Lecture 10 8

Effective code rate

* Initialize the memory before encoding the first bit (all-
Zero)
« Clear out the memory after encoding the last bit (all-

Zero)
— Hence, a tail of zero-bits is appended to data bits.

data tail —— Encoder |—— codeword

« Effective code rate :
— L is the number of data bits and k=1 is assumed:

L

R = <R
L+ K-1)

c

Lecture 10 9

Encoder representation

* Vector representation:

— We define n binary vector with K elements (one
vector for each modulo-2 adder). The i:th element
in each vector, is “17 if the i:th stage in the shift

register is connected to the corresponding modulo-
2 adder, and “0” otherwise.

« Example:

A }
g =(111)

g, =(101) A X
Nl

Lecture 10 10

Encoder representation —

cont’ d
* Impulse response representaiton:

— The response of encoder to a single “one” bit that
goes through it.

« Example: _ Branch word
Register
contents Y U
100 1 1
Inputsequence: 1 0 O
010 1 O
Output sequence: 11 10 11
e 10) U O
Input m Output
| i 11 10 11
0 i 00 00 00
| l 11 10 11

Modulo-2sum: 11 10 00 10 11
1

Lecture 10 1

Encoder representation —

cont’ d

* Polynomial representation:

— We define n generator polynomials, one for each
modulo-2 adder. Each polynomial is of degree K-1 or
less and describes the connection of the shift
registers to the corresponding modulo-2 adder.

« Example:

g (D)=g"+g".D+g\".D* =1+ D+ D?
g,(D)=g,’ +g”.D+gy’.D*=1+D’
The output sequence is found as follows:
U(D)=m(D)g,(D) interlaced with m(D)g, (D)

Lecture 10 12

Encoder representation —
cont’ d

In more details:
m(D)g,(D)=(1+D*)1+D+D*)=1+D+D’+ D"
m(D)g,(D)=(1+D*)(1+D*)=1+ D"

m(D)g,(D)=1+D+0.D’ + D’ + D*
m(D)g,(D)=1+0.D+0.D*>+0.D’ + D*

U(D) =(1,1)+(1,0)D +(0,0)D* + (1,0)D* + (1,1)D*
U=11 10 00 10 11

The convolutional codes generated by the encoders of Figure 10.13 are ponsystematic

"odes] Unlike block coding, the use of nonsystematic codes is ordinarily preferred over
systematic codes in convolutional coding.

Each path connecting the output to the input of a convolutional encoder may he
characterized in terms of it{; impulse response,|defined as the response of that path to 3
symbol 1 applied to its input, with each flip-flop in the encoder set initially in the zero

state, Equivalently, we may characterize each path in terms of a generator polynomial,

defined as thelunit-delay fransform of the impulse response. To be specific, let the generator

sequence (g5, 87, &5, - - - » i) Genote the impulse response of the ith path, where the

(L]

cocfhicients b7 g7 g¥. ..., girequal U or 1} Correspondingly, the generator polynomial
of the #th path is defined by

D) = g + gD + D% + -+ + giiD™ (10.55)

where D denotes the unit-delay variable. The complete convolutional encoder is described
by the set of generator polynomials {g™(D), g2(D), . .., g™ (D)). Traditionally, different
sariables are used for the description of convolutional and cyclic codes, with D being
commonly used for convolutional codes and X for cyclic codes.

FxXAMPLE 10.5

Consider the convolutional encoder of Figure 10.13a, which has two paths numbered 1 and
7 for convenience of reference. The impulse response of path 1 {i.e., upper path) is {1, 1, 1),
Hence, the cortesponding generator polynomial is given by

gD)=1+ D + D?

The impulse response of path 2 (i.e., lower path) is {1, 0, 1). Hence, the corresponding gen-
erator polynomial is given by

gDy =1+ D?
For the message sequence (10011), say, we have the polynomial representation
m(D) = 1 + D* + D*

As with Fourier transformation, convolution in the time domain is transformed into muliti-
plication in the D-domain. Hence, the output polynomial of path 1 is given by

D) = g™(D)m(D)
={(1+ D + D*»{1 + D* + D)
=1+ D+ D>+ D?+ D¢

From this we immediately deduce that the output sequence of path 1 14 (1111001). fimilarly,
the output polynomial of path 2 is given by

¢P(D) = g?(D)ym(D)
= (1 + D*)(1 + D? + D%
=1+D*+D*+ D"+ D°+ D°

The output sequence of path 2 is therefore [(1011111)} Finally, multiplexing the two output
sequences of paths 1 and 2, we get the encoded sequence

c = (11, 10, 11, 11, 01, 01, 11)

Note that the message sequence of length L = § bits produces an encoded sequence of length
#(L + K — 1) = 14 bits. Note also that for the shift register to be restored to its zero initial
‘state, a terminating sequence of K — 1 = 2 zeros is appended to the last input bit of the

message sequence. The terminating sequence of K — 1 zeros is called the tas! of the message.
g

Part Il

State diagram

A finite-state machine only encounters a finite number of states.

State of a machine: the smallest amount of information that, together
with a current input to the machine, can predict the output of the
machine.

In a Convolutional encoder, the state is represented by the content of the
memory.

Hence, there are2K‘1 states.
A state diagram is a way to represent the encoder.

A state diagram contains all the states and all possible transitions
between them.

Only two transitions initiating from a state

Only two transitions ending up in a state

The example encoder has two bits of memory, so there
are four possible states.

Let's give the left-hand flip-flop a binary weight of 2, and
the right-hand flip-flop a binary weight of 29,

Initially, the encoder is in the all-zeroes state.

If the first input bit is a zero, the encoder stays in the all
zeroes state at the next clock edge.

But if the input bit is a one, the encoder transitions to the
10, state at the next clock edge.

Then, if the next input bit is zero, the encoder transitions
to the 01, state, otherwise, it transitions to the 11, state.

Current
state

input

Next

00

output

00

00

10

11

01

00

11

10

00

10

01

10

11

01

11

01

01

= O | O | O |

11

10

Next State, if

Output Symbols, if

Current Input=0: Input=1: ngfgt mput = : Imput= 1:
State
00 a0 10 0o 0o 1
01 I 10 01 1 00
10 01 11 10 10 01
11 01 11 11 01 10

State diagram — cont’ d

ouput | st | | e |
¢ (Branch word s, 105,00
011 00 | 11S,]| 11
s | 0[S 11
01 |15, 00
s, 105 |10
10 | 1|5, | o1
— s, | 05|01
Lecture 10 110 ‘ 20 11 1]3] 10

Trellis — cont’ d

 Trellis diagram is an extension of the state

diagram that shows the passage of time.
— Example of a section of trellis for the rate 2 code

State

Time

Lecture 10 21

Trellis —cont’ d

« A trellis diagram for the example code

Input bits Tail bits
1 0 1 0 0
Output bits
11 10 00 10 11
0/00 0/00 0/00 0/00 0/00
~ 401 ~ 401 \\4u1 \‘4u3 \‘4u1
A1 " > A1 "> /1~ > A1 " > A1 " ~o
o A0 S A0 S A0 S5 a0 S5 ah00
,’< 0 ,’< v ,’< A1 ,’< HAQ ,’< V
1401 1401 1401 1401 1401
\ \ \ \ \
\ \ \ \ \
DA N A S\ /€ \ /€ \ /€ \
\ \ \ \ \
___________________________________ ")

Trellis — cont’ d

Input bits Tail bits
1 0 1 0 0
Output bits
11 10 00 10 11
. 0/00 0/00 0/00 0/00 0/00
~ 401 ~ 401 TN 411
. S o S o \ 1 N : . 1 o . 1
N O0/10 Yo A0
N -< Y10 Y10
0 ° o1 ~ Y01 :
\ \
\ \
\ 17 \ A
\ \
) ® @ e °)
7 75 p 7 7 r;’

Lecture 10 23

Trellis of an example 2 Conv.

code
Input bits Tail bits
1 0 1 0 0
Output bits

11 10 00 10 11

o000 , 000 , 000 0/00 0/00
TS ~ <|U1 ~ 4111
. =~ ~ S ~
\W
\
\

) ° 01 v
\

Trellis of an example 2 Conv.

code
Input bits Tail bits
1 0 1 0 0
Output bits
11 10 00 10 11
0/00 - 0/00 - 0/00 0/00 0/00
1 ‘4m1 ‘4m1
T 041 41 o vak
\ \
< 0/10 N U
N /’ i PO
° 1401 1401
\ \
\ \
\ /€ \ A
\ \
¢ ~ 0T~ " - ¢

N
N
N
W
NL
N
N
W

The Viterbi algorithm

The Viterbi algorithm performs Maximum likelihood
decoding.

« ltfinds a path through the trellis with the largest
metric (maximum correlation or minimum distance).

— It processes the demodulator outputs in an iterative
manner.

— At each step in the trellis, it compares the metric of all
paths entering each state, and keeps only the path with
the smallest metric, called the survivor, together with its
metric.

— It proceeds in the trellis by eliminating the least likely
paths.

It reduces the decoding complexity to !
L2%7

Lecture 11 26

The Viterbi algorithm - cont’ d

* Viterbi algorithm:
A. Do the following set up:

For a data block of L bits, form the trellis. The trellis has

L+K-1 sections or levels and starts at time and ends
up at time Ik

Label all the branches in the trellis with their
corresponding branch metric.

For each state in the trellis at the time ¢, which is
denoted by S(z.) € {0,1,...,2" " tlefine a parameter F(S(fl-),fl-)

B. Then, do the following:

Lecture 11

27

The Viterbi algorithm - cont’ d

1. Set r(o,tl):oand i=2.
2. Attime r, compute the partial path metrics for all
the paths entering each state.

3. Set I'(S(z),z pqual to the best partial path metric
entering each state at time ¢,

Keep the survivor path and delete the dead paths
from the trellis.

1. If i<L+Kincrease py 1 and return to step 2.
A. Start at state zero at time . Follow the
surviving branches backwalds.through the

trellis. The path found is unique and
corresponds to the ML codeword.

Lecture 11 28

Example of Hard decision Viterbi decoding

m = (101)
U=(1 10 00 10 11)
Z=(1 10 11 10 01)

o 000 . 0/00 , 0/00 0/00 0/00
B VA IO Vi | I VA |
] e el 0M1Te. 01 o 0
“ON0/10 700
) o o1 ity >
\ 0/01 D/01

0 o o 0

z, . ‘ . . ‘.
Lecture 11 29

Example of Hard decision Viterbi

decoding-cont’ d

e Label all the branches with the branch metric
(Hamming distance)

Z=(1 10 11 10 01)

~

~ ~ \\
~ ~ ~
~ ~ ~
\\9\ \\1 \g
~ \\
So So S
~ ~ ~
~ ~
~ ~
~ ~
) '
\
Y
N
N\

) \ o)
AN
AN
\\
0 >
NOZ 1@
N /’ '
AN
L o . 1 0
2.
AN
AN
N
®
0 * ¥ 1----- o 0
| | | | | |
z zZ, 5 Z, Zs Ls

Lectu re1 11 30

Example of Hard decision
. Viterbi decoding-cont’ d

| | »
A z A A Zs Zg
Lecture 11 2 3 31 4

Example of Hard decision
. Viterbi decoding-cont’ d

| | »
A z A A Zs Zg
Lecture 11 2 3 32 4

Example of Hard decision
. Viterbi decoding-cont’ d

\\
\\\ \\
~
0. 1 R
~ ~
~
S SN S
\\ S
~ ~,
~
C P °]
\ 7
\
\
AN //
! N o .
<
\ 27
- \
N N J ’
0) , 0
\
N \
\
\
\
\
\
N \
A\
4 Y
| |

| | n
A z A A Zs Zg
Lec:ture1 11 = > 33 4

Example of Hard decision
. Viterbi decoding-cont’ d

\\
\\\ \\
~
0. 1 R
~ ~
~
S SN S
\\ S
~ ~,
~
C P °]
\ 7
\
\
AN //
! N o .
<
\ 27
- \
N N J ’
0) , 0
\
N \
\
\
\
\
\
N \
A\
4 Y
| |

| | »
A z A A Zs Zg
Lecture 11 2 3 34 4

Example of Hard decision
. Viterbi decoding-cont’ d

\\
\\\ \\
~
0. 1 0
~ ~
~
So SN S
So e
~ ~,
~
C P 0 0
N -
N
AN
AN //
! N o .
<
\ T
- \
N N J ’
0 0 \ 0
S
N \
Y
\
N
Y
N
Y N
\!
4 >
| |

| | n
A z A A Zs Zg
Lecture1 11 = > 35 4

Example of Hard decision Viterbi decoding-
cont d

 Trace back and then:

i = (100)
U=(1 10 11 00 00)

| | | | | | n
A z A A Zs Zg
Lecture1 11 = > 36 +

2 THE VITERBI ALGORITHM’

The equivalence between maximum likelihood decoding and minimum distance decoding
for a binary symmetric channel implies that we may decode a convolutional code by choos-
ing a path in the code tree whose coded sequence differs from the received sequence in the
fewest number of places. Since a code tree is equivalent to a trellis, we may equally limit
our choice to the possible paths in the trellis representation of the code. The reason for
preferring the trellis over the tree is that the number of nodes at any level of the trellis

does not continue to grow as the number of incoming message bits increases; rather, jt
remains constant at 2“~', where K is the constraint length of the code.

Consider, for example, the trellis diagram of Figure 10.15 for a convolutional code
with rate r = 1/2 and constraint length K = 3. We observe that at level j = 3, there are
two paths entering any of the four nodes in the trellis. Moreover, these two paths wil] e
- identical onward from that point. Cleatly, a minimum distance decoder may make a de.
cision at that point as to which of those two paths to retain, without any loss of perfor.
mance. A similar decision may be made at level j = 4, and so on. This sequence of decisiong
is exactly what the Viterbi algorithm does as it walks through the trellis. The algorithi
operates by computing a metric or discrepancy for every possible path in the trellis. The
metric for a particular path is defined as the Hamming distance between the coded sequence
represented by that path and the received sequence. Thus, for each node (state) in the trellis
of Figure 10.15 the algorithm compares the two paths entering the node. The path with
the lower metric is retained, and the other path is discarded. This computation is repeated
for every level j of the trellis in the range M < j < L, where M = K — 1 is the encoder’s
memory and L is the length of the incoming message sequence. The paths that are retained
by the algorithm are called survivor or active paths. For a convolutional code of constraint
length K= 3, for example, no more than 2°~! = 4 survivor paths and their metrics will
ever be stored. This list of 2%~ paths is always guaranteed to contain the maximum-
likelihood choice. |

A difficulty that may arise in the application of the Viterbi algorithm is the possibility
that when the paths entering a state are compared, their metrics are found to be identical.
In such a situation, we make the choice by flipping a fair coin (i.e., simply make a guess).

In summary, the Viterbi algorithm is a maximum-likelihood decoder, which is op-
timum for an AWGN channel. It proceeds in a step-by-step fashion as follows:

Initialization

Label the left-most state of the trellis (i.e., the all-zero state at level 0) as 0, since
there is no discrepancy at this point in the computation.

Computation step j + 1

Letj=0,1,2,...,and suppose that at the previous step j we have done two things:

» All survivor paths are identified.
b The survivor path and its metric for each state of the trellis are stored.
Then, at level {clock time) j + 1, compute the metric for all the paths entering each state

of the trellis by adding the metric of the incoming branches to the metric of the connecting

survivor path from level ;. Hence, for each state, identify the path with the lowest metric
as the survivor of stepj + 1, thereby updating the computation.

Final Step

Continue the computation until the algorithm completes its forward search through
the trellis and therefore reaches the termination node (i.e., all-zero state), at which time it
makes a decision on the maximum likelihood path. Then, like a block decoder, the se-
quence of symbols associated with that path is released to the destination as the decoded
version of the received sequence. In this sense, it is therefore more correct to refer to the
Viterbi algorithm as a maximum likelibood sequence estimator,

However, when the received sequence is very long {near infinite), the storage require-
ment of the Viterbi algorithm becomes too high, and some compromises must be made.

The approach usually taken is to “truncate” the path memory of the decoder as described
here. A decoding window of length € is specified, and the algorithm operates on a corre-
sponding frame of the received sequence, always stopping after £ steps. A decision is then
made on the “best” path and the symbol associated with the first branch on that path is
released to the user. The symbol associated with the last branch of the path is dropped.
Next, the decoding window is moved forward one time interval, and a decision on the
next code frame is made, and so on. The decoding decisions made in this way are no longer
truly maximum likelihood, but they can be made almost as good provided that the decod-
ing window is long enough. Experience and analysis have shown that satisfactory results
are obtained if the decoding window length ¢ is on the order of 5 times the constraint
length K of the convolutional code or more.

» EXAMPLE 10,6 Correct Decoding of Received All-Zero Sequence

Suppose that the encoder of Figure 10.13a generates an all-zero sequence that is sent over a
binary symmetric channel, and that the reccived sequence is (0100010000, . .). There are two
errors in the received sequence due to noise in the channel: one in the second bit and the other
in the sixth bit. We wish to show that this double-error pattern is correctable through the
application of the Viterbi decoding algorithm.

In Figure 10.17, we show the results of applying the algorithm for level j = 1, 2, 3, 4,
5. We see that for j = 2 there are {for the first time) four paths, one for each of the four states
of the encoder. The figure also includes the metric of each path for each level in the
computation. |

In the left side of Figure 10.17, for j = 3 we show the paths entering each of the states,
together with their individual metrics. In the right side of the figure, we show the four survivors
that result from application of the algorithm for level j = 3, 4, S,

Examining the four survivors in Figure 10.17 for j = 5, we sce that the all-zero path
has the smallest metric and will remain the path of smallest metric from this point forward.
This clearly shows that the all-zero sequence is the maximum likelihood choice of the Viterbi
decoding algorithm, which agrees exactly with the transmitted sequence. <

> EXaMPLE 10.7 Incorrect Decoding of Received All-Zero Sequence

Suppose next that the received sequence is (1100010000 . . .), which contains three errors
compared to the transmitted all-zero sequence.

In Figure 10.18, we show the results of applying the Viterbi decoding algorithm for j =
1, 2, 3, 4. We see that in this example the correct path has been eliminared by level j = 3.
Clearly, a triple-error pattern is uncorrecrable by the Viterbi algorithm when applied to a
convolutional code of rate 1/2 and constraint length K = 3. The exception to this rule is a
triple-error pattern spread over a time span longer than one constraint length, in which case
it is very likely to be correctable. <

& FREE DISTANCE OF A CONVOLUTIONAL CODE -

The performance of a convolutional code depends not only on the decoding algorithm
used but also on the distance properties of the code. In this context, the most important
single measure of a convolutional code’s ability to combat channel noise is the free distance,
denoted by dy... The free distance of a convolutional code is defined as the minimum
Hamming distance between any two code words in the code. A convolutional code with
free distance dp,.. can correct t errors if and only if d;... is greater than 21,

The free distance can be obtained quite simply from the state diagram of the con-
volutional encoder. Consider, for example, Figure 10.16b, which shows the state diagram

Received
sequence

Received
sequence

Received

sequence

Received
sequence

Received
sequence

oo

2
5

a
-
3

3
a

0

M

Figure 10.17
lllustrating steps in the Viterbi algorithm for Example 10.6.

1 1 2 2
O - - - - -
~ '\\
~- ~a >
-
\\ \\ //.
2~
\\ - \\ =
T .
™~ T
- -3
2
Survivors
1 1 2 2 2
o
\\. ™~
~ ~2 2
- - - 3
'\\ \<'\ —
— P
\\ - i 3
~ 2 3 ~
™~ S
- - -3

Survivors

Received

sequence 11
2
O &«&——=»
\\
J =1 \\\O
-
Received
sequence 11 (e]e]
2 2
O &————a——»
~ ~
~ ~
~ ~
\\O ~
- 4
Jg =2 Y
\\
~ 1
.
*
b
»

Received
sequence

Received
sequence

Figure 10.18

lllustrating breakdown of the Viterbi algorithm in Example 10.7.

Lecture sides adopted from:

[1] Anders Ahlén Professor in Signal Processing, Uppsala University, Lecture notes
http://www.signal.uu.se/Courses/CourseDirs/ModDemKod/2009/body.html

[2] Symon Haykin communication systems v4

http://www.signal.uu.se/Courses/CourseDirs/ModDemodKod/2009/body.html
http://www.signal.uu.se/Courses/CourseDirs/ModDemKod/2009/body.html

