EENG-373

Channel coding
(Error correcting codes)

Dr. Mohab A. Mangoud

Associate Professor of Wireless Communications

University of Bahrain, College of Engineering,
Department of Electrical and Electronics Engineering,
P.O. Box 32038, Isa Town,Kingdom of Bahrain

Office: +973 17876033/6261 Mobile +973 33332771
Fax: + 973 17680924 Email : mangoud@eng.uob.bh

URL: http://userspages.uob.edu.bh/mangoud



http://www.uob.bh/
mailto:mangoud@eng.uob.bh
http://userspages.uob.edu.bh/mangoud

Block Diagram of Digital Communications System

Digital
Input
Data

Analog Analog
Input Qutput
Signal Signal

Quantize

Encryption

Channel
Encoder

Modulator




Why using error correction coding?

— Error performance vs. bandwidth
— Power vs. bandwidth
— Data rate vs. bandwidth 1

— Capacity vs. bandwidth

Coding gain:

For a given bit-error probability,

the reduction in the Eb/NO that can be
realized through the use of code:

G[dB]=£EIb] [dB]—[I'\Elbj [dB]

0./ 0

E +— Uncoded

E, /N, (dB)
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We will focus on two coding types:

— (1) Block codes: mapping of information source into channel inputs
done independently: Encoder output depends only on the current
block of input sequence

— (2) Convolutional codes: each source bit influences n(L+1) channel
input bits. n(L+1) is the constraint length and L is the memory depth.
These codes are denoted by (n,k,L).




Block Codes

The encoder for a block code accepts

mput

blocks oflk

n output

symbols and produces blocks of

symbols.

Usually the input symbols and output symbols, are
both bits {0,1}, but there 1s one notable exception
(Reed-Solomon Codes) for which mput and output

symbols are M-ary.

Note that there will bel 7 — & redundant symbols |

The 1*ati0 1s called the code rate.

— Small  -> lots of redundancy

— Large r -> little redundancy




Typical Values

 For a practical block codes, 20<» <1000 1s a
typical range of values.

 For practical block codes, Eiril 1s typical.

 We will refer to an “(n,k)” block code.



Linear block codes — cont’d

* The information bit stream is chopped into blocks of k bits.
* Each block is encoded to a larger block of n bits.

* The coded bits are modulated and sent over channel.
 The reverse procedure is done at the receiver.

Channel

Data block — encoder — Codeword

kEts nvbits

n-kK Redundant bits

R, = K Code rate
n
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Linear block codes — cont’d

The Hamming weight of vector ¢, denoted by w(c), is the
number of non-zero elements in c.

The Hamming distance between two vectors ci and cj, is
the number of elements in which they differ.

The minimum distance of a block code is
d(ci,cj) =w(ci®cj)

dpmin =Mind(c; ,Cj) = minw(c;)
i | i



Linear block codes — cont’d
* Error detection capability is given by
e:dMn_l

* Error correcting-capability t of a code, which is
defined as the maximum number of guaranteed
correctable errors per codeword, is

t:[dMn_lJ
2



Linear block codes — cont’d

* Encoding in (n,k) block code

c=mG

/ \
UV
/ N
(CH . C,)=(m;,m,,..., mk)-E
Vk

(C1,Ch,...nCr)=my -V +m, -V, +...4m, -V,

— The rows of G, are linearly independent.
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Linear block codes — cont’d

 Example: Block code (6,3)

Message vector Codeword

000 000000

V,| [110100] 100 110100
G=|V,|=[011010 010 011010
'V, | [101001 110 101110

001 101001
101 011101
011 110011
111 000111



Linear block codes — cont’d
e Systematic block code (n,k)

— For a systematic code, the first (or last) k elements in
the codeword are information bits.

G=[P:I]
|, =k xk identity matrix
P, =kx(n—k) matrix

U= (u11u2’---’un) — (\pv P2y pn—kj’[nl’ m,,...,M, )

J/

parity bits messz;éebits
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Linear block codes — cont’d

* For any linear code we can find an matrixH(m_k)xn
, Which its rows are orthogonal to rows of (G

-

GH =0

* H is called the parity check matrix and its
rows are linearly independent.

* For systematic linear block codes:
H — [In—k PT]




Linear block codes — cont’d

Data source ——»

Datasink

Modulation

m Channel C
Format \
encoding
Channel
Format R d din
M ecoding r
-
r=U+e

r=(r,r,..,r,) receiiled codeword or vector
e=(e,e,,....,e,) error patternor vector
* Syndrome testing:
— Sis syndrome of r, corresponding to the error pattern e.

'S=rH" =eH'

2006-02-16
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Detection

channel

|Demodu|ation| ,
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Linear block codes — cont’d
 Standard array

1. Forrow i=23.. 2”‘,k find a vector in of minimum weight
which is not already listed in the array.

2. Call this pattern €; and form the Ith row as the corresponding

coset
zero
codeword | — CJ C2 o C.,
e e, DC oo e, dDC
.‘ 2 2 . 2 : 2k ™ coset
/ ezn—k ezn—k @ C2 e e2n—k C_D C2k
coset leaders




Linear block codes — cont’d

 Standard array and syndrome table decoding

1. Calculate S=rH’
2. Find the coset leader,é=¢;, corresponding tos .
3. Calculate U=r+é and corresponding

— Notethat U=r+é=(U+e)+é=U+(e+8)
e |fé=e, erroris corrected.
 |Ifé=e, undetectable decoding error occurs.



Linear block codes — cont’d

 Example: Standard array for the (6,3) code

codewords

000000

110100

011010

101110

\

101001

011101

110011

000111

000001
000010
000100
001000
010000
100000
010001

~

110101
110110
110000
111100
100100
010100
100101

011011
011000
011100

Coset leaders

101111
101100
101010

101000
101011
101101

011100
011111
011010

110010
110001
110111

000110
000101
000110

N

coset

010110



Linear block codes — cont’d

Error pattern Syndrome

000000 000 U =(101110) transmitted.

000001 101 r =(001110) is received.

000010 011 Theevn dromes FFis comp ted:

000100 110 = Thesyndromeof ris computed:

001000 001 S=rH" =(001110)H" = (100)

010000 010 = Error patterncorresponding to this syndromeis
100000 100 & = (100000)

010001 111

= The corrected vector Is estimated

N

U =r+&=(001110) + (100000) = (101110)



Hamming codes

* Hamming codes

— Hamming codes are a subclass of linear block codes and
belong to the category of perfect codes.

— Hamming codes are expressed as a function of a single

integer m> 2
Code length : n=2"-1
Number of information bits: k=2" -m-1
Number of parity bits: n-k =m
Error correction capability: t=1 ,
—TC o i) ciiceiiiiicei, .., CONsist Of all

non-zero binary m-tuples.



Hamming codes

* Example: Systematic Hamming code (7,4)

10 0/0111
H201O§1011:[|3x3 PT]
0011101
011;1 00 0
G:101501002[PE|]
1100010 -
1110001




Properties of Block Codes

* Because decoding 1s generally the difficult problem,
most block codes of mterest have structure to them.
e Acode C= {Qlﬁgg,--.,gzk } 1S linear 1if:
creC,cr eC=>c®Dcy eC

p

where @ denotes modulo-2 bitwise addition.

« Example: The (7,4) Hamming Code 1s linear.

= (0001) = y = (1010001)
—(0110):,» y=(0010110)
x=(0111) = y = (1000111)



Properties of Block Codes (continued)

e Acode (= {c_?l,t_?z,---,ngf } 1s systematic 1if there are
k bits of the codeword which correspond directly to
information buts.

« Example, the (7.4) Hamming Code 1s systematic:
Cl = .1.*1,(?2 = .172,(?3 = .173,C4 = .174
* We can think of the remaining bits as just a fancy
system of parity checks: ¢5 =x; ®xy @ x3
ce=x) Dx3Dxy
c7=x1Dxy) Dxy



Properties of Block Codes (continued)

» Acode C={cp.cy.....cok} iscyelicif:
(c1,02,...,¢;) eC=(¢y,¢1,....¢_1) €C

« Example: the (7,4) Hamming Code 1s cyclic.
x = (0001) = ¢ = (1010001)
x = (1000) = ¢ = (1101000)
x=(0100) = ¢ = (0110100)
x=(1010) = ¢=(0011010)
x=(1101)= ¢ = (0001101)
x=(0110) = ¢ = (1000110)
x=(0011) = ¢=(0100011)

» Most practical block codes are linear and cyclic.
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Distance Properties of a Block Code

» The Hamming Distance between two codewords ¢; €
and ¢y €C 1s the number of bits in which they differ:
n
dp(c1.c2)= 21 e
i=1
« Example: dpg((1010001),(1101000)) =4
* The mmimum distance dpg i, of a code 1s the
smallest distance separating any two codewords:
dp ,min — 1_1;11_1{911’{ (Q.i ,C j)}
[# ]
« Example: | dg min =3 for (7,4) Hamming Code

r osumi{xor{c{l,:}),c{9,:3))

ansg =

3




Decoding of Block Codes

* For a linear error correction code, dp .. 18 the
smallest weight of any nonzero codeword.

 Just as we wanted to make Euclidean distance large
for modulation, we want to make Hamming distance
large for our block codes.

* The decoder’s job will be to choose the codeword
most closely resembling the received sequence of
bits.

— Example: Suppose we transmit: ¢ = (0100011) but recerve
¥ =(0100001) The closest matchis: ¢ =(0100011) so

we estimate that our data bits were: £ =(0011)



Error Correction Capability

Any code with minimum distance d 7 min, can

correct any combination of up to

eITOrS. _ dH min — 1
2

We call ¢ the error correcting capability of the code.

There 1s at least one combination of 7+/ errors which
will cause an error.

Any code with mmimum distance dg nin  can
detect any combination of up to dp7 i =1 errors
by the channel.



Block Code Error Detection and
Correction

* (6,3) code 23=>2°d .=3
 Can detect 2 bit errors,
correct 1 bit

— 110100 sent; 110101 received

* Erasure: Suppose code word
110011 sent but two digits
were erased (xx0011),
correct code word has
smallest Hamming distance

Messag Code-

€
000

100
010
110
001
101
011
111

word
000000

110100
011010
101110
101001
011101
110011
000111

W N N W W W = N

= O W N W NN W DN
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10.3 Linear Block Codes

A code is said to b finear §f any two code words in the code can be added in modyly.)

arithmetic to produce a third code word in the code. Consider then an{{n, k) linear blogi

code, In which & bits of the 1 code bits are always identical to the message sequence to

transmitted, The  — & bits in the remaining portion ace computed from the message bir

in accordance with a prescribed encoding rule that determines the mathematical structyye

~ of the code. Accordingly, these # — k bits are referred to asgeneralized pariy check b
or simply parity bits Block codes in which the message bits are transmitted in unalters
form are called systernatic codes. For applications requiring both error detection and ernh

("correction, theJuse of systematic block codes simpliies implementation of the decoder,




Figure 10.4

Structure of systematic code word.

bD’ bl, * ot ',bn—k—l

mg, My . .

. My

-1

AN

Parity bits

Message bits
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-

According to the rebresentatinn of Figure 10.4, the (» — k) left-most bits of a code

word are identical to the corresponding[parity bits, and the|k right-most bits|of the code
word are identical to the corresponding message bits] We may therefore write

by i=0 1, m k-1
“ ({20 . f=ﬂ—k,ﬂ—k,+1,...,ﬂ”1

(10.1)

The (n — k) parity bits are [inear sums of the k message bits, as shown by the generalized
relation

bi = potmy + pymy + o0t P,y - {10.2)

where the coefficients are defined as follows:
e = 1  ifb dePends on (103

0  otherwise
The coefficients p;; are chosen in such a way that the rows of the generator matrix are
linearly independent and the parity equations are unigue.

The system of Equations {10,1) and (10.2) defines the mathematical structure of the
(n, k) linear block code. This system of equations may be rewritten in a compact form




using matrix notation, To proceed with this reformulation, we define the 1-by-k message
vector, or information vector, m, the 1-by-(n — k) parity vector b, and the 1-by-# code
vector c as follows:

m = [mﬂzf iy e s us mk—l] (10'4)
b= {bﬂ: bl; R bﬂ-i-l] (105)
¢ = 6oy 1y 23 Cuil (10.6)

Note that all three vectors arc[row veciors) The use of row vectors is adopted in this chapter
for the sake of being consistent with the notation commonly used in the coding literature.
We may thus rewrite the set of simultaneous equations defining the parity bits in the
compact matrix form:

| b=mp ] | (10.7)
where P is the k-by-(n — k) coefficient matrix defined by
/. |- Poo Pot . Po,nukﬂ i \
p| P Pu T P (10.8)
LPe-10 Pe1a 0t Dr-tp—k-1 Y,

where p;; is 0 or 1,



From the definitions given in Equations (10.4)—(10.6), we see that c may be expressed
as a partitioned row vector in terms of the vectors m and b as follows:

¢ = [bim] (10.9)

Hence, substituting Equation (10.7) into Equation (10.9) and factoring out the common
message vector i, we get

c="m[P" (10.10)
where I, is the k-by-k identity matrix;
| 4 1 0 --- 07 )
01 -0
. Ik — . . . (10.11)
L 0 0 Ny
Define the k-by-n generator matrix
G=[P:L] J (10.12)

The generator matrix G of Equation (10.12) is said to be in the canonical form in that its
k rows are linearly independent; that is, it is not possible to express any row of the matrix
G as a linear combination of the remaining rows. Using the definition of the generator
matrix G, we may simplify Equation (10.10) as

¢ = mG : (10.13)



The full set of code words, referred to simply as the code, is generated in accordance
with Equation (10.13) by lerting the message vector m range through the set of all 2*
binaty k-tuples (1-by-k vectors). Moreover, the sum of any two code words is another

code word. This basic property of linear block codes is called c_Iosure. Lo prove 1ts validity,
consider a pair of code vectors ¢; and ¢ corresponding to a pair of m»assagil vectors m; and
m,, respectively. Using Equation {10.13) we may express the sum of ¢; and c; as

= (m; + my)G

The modulo-2 sum of m; and m; represents 2 new message vector. Correspondingly, the

modulo-2 sum of ¢; and c; represents a new cc-dE: vector. ) L



Ll e e e T S S

There is another way of expressing the relationship berween the message bits and
parity-check bits of a linear block code. Let H denote an (» — k)-by-# matrix, defined as

| H = [I,—:P7] (10.14)
where PT is an (n — k)-by-k matrix, representing the transpose of the coefficient matrix P,

and L, is the (# — k}-by-(n — k) identity matrix. Accordingly, we may perform the
following multiplication of partitioned matrices: |

PT
HGT = [Iﬂkzpf][-l---]
| R
=PT + P

where we have used the fact that multiplication of a rectangular matrix by an identity
matrix of compatible dimensions leaves the matrix unchanged. In modulo-2 arithmetic,
we have PT + PT = 0, where 0 denotes an (n — k)-by-k null matrix (i.e., a matrix that has
zeros for all of its elements). Hence,

HGT = 0 (10.1S)

Equivalently, we have GHT = 0, where 0 is a new null matrix. Postmultiplying both sides
of Equation {10.13) by HT, the transpose of H, and then using Equation (10.15)}, we get

cHT = mGH”
=0

The matrix H is called the parity-check matrix of the code, and the set of equations spec-
ified by Equation (10.16) are called parity-check equations.

The generator equation (10.13) and the parity-check detector equation {10.16) are
basic to the description and operation of a linear block code. These two equations are
depicted in the form of block diagrams in Figure 10.54 and 10.5b, respectively.

(10.16)



Message vector
m

Code vector
c

Figure 10.5

Block diagram representations of the
generator equation (10.13) and the parity-
check equation (10.16).

—

Generator
matrix
G

—

(a)

—

Parity-check
matrix
H

—

(b)

©2000, John Wiley & Sons, Inc.
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Code vector
C

Null vector
0



& ExAamMPLE 10.1 Repetition Codes

Repetition codes represent the simplest type of linear block codes. In particular, a single mes-
sage bit is encoded into a block of # identical bits, producing an (n, 1) block code. Such a
code allows provision for a variable amount of redundancy. There are only two code words
in the code: an all-zero code word and an all-one code word.

Consider, for example, the case of a repetition code with k = 1 and # = $. In this case,
we have four parity bits that are the same as the message bit. Hence, the identity matrix I, =
1, and the coefficient matrix P consists of a 1-by-4 vector that has 1 for all of its elements,
Correspondingly, the generator matrix equals a row vector of all 1s, as shown by

G=[1 11 1:i1]

The transpose of the coefficient matrix P, namely, matrix PT, consists of a 4-by-1 vector that
has 1 for all of its elements. The identity matrix I,_, consists of a 4-by-4 matrix. Hence, the

parity-check martrix equals
1 0 0 017
010 0-1
H = .
001 0:1
00 0 1:1.

Since the message vecror consists of a single binary symbol, 0 or 1, it follows from Equation
{10.13) that there are only two code words: 00000 and 11111 in the (5, 1) reperition code,
as expected. Note also that HG” = 0, modulo-2, in accordance with Equation (10.15). <



Property 1
The syndrome depends only on the error pattern, and not on the transmitted code word,

To prove this property, we first use Equations (10.17) and (10.19}, and then Equation
(10.16) to obtain -

s = (c + e)H”
= cH” + eH” (10.20)
= ¢H”

Hence, the parity-check matrix H of a code permits us to compute the syndrome s, which
depends only upon the error pattern e. '




Property 2
All error patterns that differ by a code word have the same syndrome.

For % message bits, there are 2* distinct code vectors denoted as ¢;, i = 0, 1,
2% — 1. Correspondingly, for any error pattern ¢, we define the 2* distinct vectors e, as

e, = e+ ¢, i=0,1,...,2-1 - {10.21)

The set uf vectors {e;, i = 0, 1,..., 2% — 1] so defined is called a coset of the code. In
other words, a coset has exactly 2% elements that differ at most by a code vector. Thus,
an (r, k) lincar block code has 27 % possible cosets. In any event, multiplymg both sides
of Equation (10.21) by the matrix H', we get

eHT = eH” + cH”
= eH?!

*a

(10.22)

which is independent of the index 7. Accordingly, we may state that each coset of the code
is characterized by a unique syndrome.



We may put Properties 1 and 2 in perspective by expanding Equation (10.20). Spe-
cifically, with the matrix H having the systematic form given in Equation (10.14), where
the matrix P is itself defined by Equation (10.8), we find from Equation (10.20) that the
(n — k) elements of the syndrome s are linear combinations of the # elements of the error
pattern e, as shown by

Sg = €y t+ €upPoo t €p—p-1P10o + -0 T EpaPr-10

1= €1 F epekPor + eppmaPrr + 0 00 F Cpabion (10.23)

Spembm] — €x—k-1 + E#—kpl},n—k—l + ot Ers—‘i.pk—’]_,u—k—l

This set of {# — k) linear equations clearly shows that the syndrome contains information
about the error pattern and may therefore be used for error detection. However, it should
be noted that the set of equations is underdetermined in that we have more unknowns
than equations. Accordingly, there is 7o unique solution for the error pattern. Rather,
there arc 2" error patterns that satisfy Equation (10.23) and therefore result in the sam¢
syndrome, in accordance with Property 2 and Equation (10.22). In particular, with 2t
possible syndrome vectors, the information contained in the syndrome s about the error
pattern e is zof enough for the decoder to compute the exact value of the transmitted code
vector. Nevertheless, knowledge of the syndrome s reduces the search for the true error

pattern ¢ from 2" to 277* possibilities. Given these possibilities, the decoder has the task
of making the best selection from the cosets corresponding to s.



MiNniMUM DisTANCE CONSIDERATIONS

Consider a pair of code vectors ¢, and ¢, that have the same number of elements, The
Hamming distance d(c,, c;) between such a pair of code vectors is defined as the number
of locations in which their respective elements differ. -

The Hamming weight w(c) of a code vector ¢ is defined as the number of nonzero
clements in the code vector. Equivalently, we may state that the Hamming weight of a
code vector is the distance between the code vector and the all-zero code vector.

The minimum distance d_.,;. of a linear block code is defined as the smallest Hamming
distance between any pair of code vectors in the code. That is, the minimum distance is
the same as the smallest Hamming weight of the difference between any pair of code
vectors, From the closure property of linear block codes, the sum (or difference) of two
code vectors is another code vector. Accordingly, we may state that the sminimum distance
of a linear block code is the smallest Hamming weight of the nonzero code vectors in the
code.

The minimum distance d,, is related to the structure of the parity-check matrix H
of the code in a fundamental way. From Equation {(10.16) we know that a linear block
code is defined by the set of all code vectors for which cH” = 0, where HT is the transpose
of the parity-check matrix H. Let the matrix H be expressed in terms of its columns as
follows:

H = [-hls h.?,: "rey hﬂ] {1024)



of the parity-check matrix H. Let the matrix H be expressed in terms of its columns as
follows:

H = [hy, hy,..., h,] (10.24)

Then, for a code vector ¢ to satisfy the condition cH” = 0, the vector ¢ must have 1s in
such positions that the corresponding rows of H” sum to the zero vector 0. However, by
definition, the number of 1s in a code vector is the Hamming weight of the code vector.
Moreover, the smallest Hamming weight of the nonzero code vectors in a linear block
code equals the minimum distance of the code. Hence, the minimum distance of a linear
block code is defined by the minimum number of rows of the matrix HT whose sum is
equal to the zero vector.



The minimum distance of a linear block code, d...;., is an important parameter of the
code. Specifically, it determines the error-correcting capability of the code. Suppose an
{n, k) linear block code is required to detect and correct all error patterns (over a binary
symmetric channel), and whose Hamming weight is less than or equal to ¢. That is, if a
code vector c; in the code is transmitted and the received vector is r = ¢; + ¢, we require
‘that the decoder output & = ¢;, whenever the error pattern ¢ has a Hamming weight
wie) = t. We assume that the 2* code vectors in the code are transmitted with equal
probability. The best strategy for the decoder then is to pick the code vector closest to the
received vector r, that is, the one for which the Hamming distance d(c,, r) is the smallest.
With such a strategy, the decoder will be able to detect and correct all error patterns of
Hamming weight wi(e) =< ¢, provided that the minimum distance of the code is equal to or
greater than 2¢ + 1, We may demonstrate the validity of this requirement by adopting a
geometric mterpretation of the problem. In particular, the 1-by-n code vectors and the
1-by-n received vector are represented as points in an #-dimensional space. Suppose that
we construct two spheres, each of radius £, around the points that represent code vectors
¢;and ¢;. Let these two spheres be disjoint, as depicted in Figure 10.64. For this condition
to be satisfied, we require that d(c,, ¢;) = 2t + 1, If then the code vector ¢, is transmitted
and the Hamming distance d(c;, r) < ¢, it is clear that the decoder will pick c; as it is the



Figure 10.6

(a) Hamming distance d(c; ¢;) > 2t + 1. (b)
Hamming distance d(c; ¢;) < 2t. The received
vector is denoted by r.
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code vector closest to the received vector r. If, on the other hand, the Hamming distance
d(c;, ¢;) < 2t, the two spheres around c; and c; intersect, as depicted in Figure 10.66. Here
we see that if ¢; is transmitted, there exists a received vector r such that the Hammjng
distance d{c;, 1} = t, and yet r is as close to c; as it is to c;. Clearly, there is now the
possibility of the decoder picking the vector ¢;, which is wrong. We thus conclude that gn
(n, k) linear block code has the power to correct all error patterns of weight t or less if,
and only if, |

dic,¢) =2+ 1 for all ¢; and ¢;

By definition, however, the smallest distance between any pair of code vectors in a code
is the minimum distance of the code, d,;.. We mayv therefore state that an (i, k) linear
block code of minimum distance d,;, can correct up io t errors if, and only if,

t < | Hdpm — 1) (10.25)

where | | denotes the largest integer less than or equal to the enclosed quantity. Equation
(10.25) gives the error-correcting capability of a linear block code a quantitative meaning.



& SYNDROME DECODING

We are now ready to describe a syndrome-based decoding scheme for lincar block codes.
Let ¢, Ca, . + » , C2+ denote the 2% code vectors of an (n, k) linear block code. Let r denote
the received vector, which may have one of 2” possible values. The receiver has the task
of partitioning the 2™ possible received vectors into 2* disjoint subsets @4, @5, - . . , ¢ in
such a way that the ith subset @; corresponds to code vector ¢; for 1 = i = 2%, The received
vector r is decoded into c; if it is in the ith subset. For the decoding to be correct, r must
be in the subset that belongs to the code vector ¢; that was actually sent.

The 2* subsets described herein constitute a standard array of the linear block code.
To construct it, we may exploit the linear structure of the code by proceeding as follows:

1. The 2% code vectors are placed in a row with the all-zero code vector ¢, as the left-
most element.

2. An error pattern ¢, is picked and placed under c;, and a second row is formed by
adding e, to each of the remaining code vectors in the first rows; it is important that
the etror pattern chosen as the first element in a row not have prevmus]y appeared
in the standard array. |

3. Step 2 is repeated until all the possible error patterns have been accounted for.

Figure 10.7 illustrates the structure of the standard array so constructed. The 2* columns
of this array represent the disjoint subsets D, By, . .., D,e. The 277% rows of the array



Figure 10.7

Standard array for an (n, k) block code.

e, C, + €,
e; C, + €,
e; C, + €
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represent the cosets of the code, and their first elements e, . . ., et are called coser

leaders.

For a given channel, the probability of decoding error is minimized when the most
likely error patterns [i.e., those with the largest probability of occurrence) are chosen as
the coset leaders. In the case of a binary symmetric channel, the smaller the Hamming
weight of an error pattern the more likely it is to occur. Accordingly, the standard array
should be constructed with each coset leader having the minimum Hamming weight in its

coset.
We may now describe a decoding procedure for a linear block code:

1. For the received vector r, compute the syndrome s = rH,

2. Within the coset characterized by the syndrome s, identify the coset leader (i.e., the
error pattern with the largest probability of occurrence); call it e,.

3. Compute the code vector

c=r+e (10.26)

as the decoded version of the received vector r.

This procedure is called syndrome decoding.



& ExampLE 10.2 Hamming Codes’
Consider a family of (#, &) linear block codcs that have the following parameters:

Block length: n=2"-1
Number of message bits: k=27 —m — 1
Number of parity bits: n-—k=m

where # = 3. These are the so-called Hamming codes.

Consider, for example, the {7, 4) Hamming code with » = 7 and k& = 4, corresponding
to m = 3. The generator matrix of the code must have a structure that conforms to Equation
(10.12). The following matrix represents an appropriate generator matrix for the (7, 4) Ham-

mingcode:
11 0:1 0 0 0
01 1:0 100
G = . )
11 1:00 10
1 0 1:0 0 0 1.
P L



E TABLE 10.1 Code words of a (7, 4) Hamming code

Message Weight of Message Weight of
Word Code Word Code Word Word Code Word Code Worg
0000 0000000 0 1000 1101000 3
0001 1010001 3 1001 0111001 4
0010 1110010 4 1010 0011010 3
0011 0100011 -3 1011 1001011 4
0100 3110100 3 1100 1011100 4
0101 1100101 4 1101 0001101 3
0110 1000110 3 1110 0101110 4
0111 4 1111 1111111 7

0010111




The corresponding parity-check matrix is given by

1 0 01 0 1 1]
H=]1010:-111 0

00 1:0 1 1 1

.In:k P

With £ = 4, there are 2% = 16 distinct message wurds,. which are listed in Table
10.1. For a given message word, the corresponding code word is obtained by using Equa-

tion (10.13), Thus, the application of this equation results in the 16 code words listed in
Table 10.1.



In Table 10.1, we have also listed the T{amming weights of the individual code words
in the (7, 4) Hamming code. Since the smallest of the Hamming weights for the nonzero code
words is 3, it foliows that the minimum distance of the code is 3. Indeed, Hamming codes
have the property that the minimum distance d,;, = 3, independent of the value assigned to
the number of parity bits m. |

To illustrate the relation berween the minimum distance d_;, and the structure of the
parity-check matrix H, consider the code word 0110100. In the matrix multiplication defined
by Equation (10.16), the nonzero elements of this code word “sift’” out the second, third, and
fifth columns of the matrix H yielding

10 0 0 0
11+]10]+ (1 0
0 1 1 0

I

| WE may perform similar calculations for the remaining 14 nonzero code words, We thus find
that the smallest number of columns in H that sums to zero is 3, confirming the earlier state-
ment that d;, = 3.

An important property of Hamming codes is that they satisfy the condition of Equation
{10.25) with the equality sign, assuming that ¢ = 1. This means that Hamming codes are
single-error carrecting binary perfect codes.

Assuming single-error patterns, we may formulate the seven coset leaders listed in the
right-hand column of Table 10.2. The corresponding 23 syndromes, listed in the left-hand
column, are calculated in accordance with Equation {10.20). The zero syndrome signifies no
transmission ¢rrors.

Suppose, for example, the code vector [1110010] is sent, and the received vector is



. TABLE 10.2 Decoding
= table for the (7, 4)

. Hamming code defined

. in Table 10.1 |

Syndrome Error Pattern
000 0000000
100 1000000
0140 - 0100000
001 0010000
110 0001000
011 0000100
111 0000010

101 oo00001




[11000107} with an error in the third bit. Using Equarion (10,19}, the syndrome is calculated
to be ‘

s = [1100010]

= = D ek DT e

0 0
1 0
0o 1
1 0
11
11
0 1

=[0 0 1]
From Table 10.2 the corresponding coset leader (i.c., error pattern with the highest probability
of occurrence) is found to be I[OUIUUUU] indicating correctly that the third bit of the received

vector is erroneous. Thus, adding this error pattern to the received vector, in accordance with
Equation (10.26), yields the correct code vector actually sent. .




