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Why using error correction coding? 

– Error performance vs. bandwidth 

– Power vs. bandwidth 

– Data rate vs. bandwidth 

– Capacity vs. bandwidth  
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Coding gain: 

For a given bit-error probability,  
the reduction in the Eb/N0 that can be 
realized through the use of code: 
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• We will focus on two coding types:  

 

– (1) Block codes: mapping of information source into channel inputs 
done independently: Encoder output depends only on the current 
block of input sequence 

 

– (2) Convolutional codes: each source bit influences n(L+1) channel 
input bits. n(L+1) is the constraint length and L is the memory depth. 
These codes are denoted by (n,k,L). 
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Linear block codes – cont’d 
• The information bit stream is chopped into blocks of k bits.  

• Each block is encoded to a larger block of n bits. 

• The coded bits are modulated and sent over channel. 

• The reverse procedure is done at the receiver. 

 

 

 

Data block 
Channel 
encoder 

Codeword 

k bits  n bits 

rate Code   

bits  Redundant        

n

k
R

n-k

c 



Linear block codes – cont’d 

• The Hamming weight of vector c, denoted by w(c), is the 
number of non-zero elements in c. 

• The Hamming distance between two vectors ci and cj, is 
the number of elements in which they differ.   

 

• The minimum distance of a block code is  
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Linear block codes – cont’d 

• Error detection capability is given by 

 

 

• Error correcting-capability t of a code, which is 
defined as the maximum number of guaranteed 
correctable errors per codeword, is 
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Linear block codes – cont’d 
• Encoding in (n,k) block code 

 

 

 

 

 

 

– The rows of G, are linearly independent. 
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Linear block codes – cont’d 

• Example: Block code (6,3) 
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Linear block codes – cont’d 
• Systematic block code (n,k) 

– For a systematic code, the first (or last) k elements in 
the codeword are information bits. 
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Linear block codes – cont’d 
• For any linear code we can find an matrix               

, which its rows are orthogonal to rows of     
: 

 

• H  is called the parity check matrix and its 
rows are linearly independent. 

• For systematic linear block codes: 
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Linear block codes – cont’d 
 

 

 

 

 
 

• Syndrome testing: 
– S is syndrome of r, corresponding to the error pattern e. 
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Linear block codes – cont’d 
• Standard array 

1. For row                 ,     find a vector in       of minimum weight 
which is not already listed in the array. 

2. Call this pattern     and form the          row as the corresponding 

coset  
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Linear block codes – cont’d 

• Standard array and syndrome table decoding 

1. Calculate  

2. Find the coset leader,        , corresponding to   . 

3. Calculate              and corresponding    . 

 

– Note that  

• If        , error is corrected. 

• If        , undetectable decoding error occurs. 
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Linear block codes – cont’d 

• Example: Standard array for the (6,3) code 

010110100101010001

010100100000

100100010000

111100001000

000110110111011010101101101010011100110000000100

000101110001011111101011101100011000110110000010

000110110010011100101000101111011011110101000001

000111110011011101101001101110011010110100000000
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Linear block codes – cont’d 
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• Hamming codes 
–  Hamming codes are a subclass of linear block codes and 

belong to the category of perfect codes. 
– Hamming codes are expressed as a function of a single 

integer          .  
 
 
 
 
 

– The columns of the parity-check matrix, H, consist of all 
non-zero binary m-tuples. 
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Hamming codes 
• Example: Systematic Hamming code (7,4) 
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Block Code Error Detection and 
Correction 

• (6,3) code 23 => 26, dmin=3 

• Can detect 2 bit errors, 
correct 1 bit 
– 110100 sent; 110101 received 

• Erasure: Suppose code word 
110011 sent but two digits 
were erased (xx0011), 
correct code word has 
smallest Hamming distance 

Messag
e 

Code-
word 

1 2 

000 000000 4 2 

100 110100 1 3 

010 011010 3 2 

110 101110 3 3 

001 101001 3 2 

101 011101 2 3 

011 110011 2 0 

111 000111 3 1 
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Chapter 10 
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Figure 10.4 
Structure of systematic code word. 
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Figure 10.5 
Block diagram representations of the 

generator equation (10.13) and the parity-
check equation (10.16). 
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Figure 10.6 
(a) Hamming distance d(ci, cj)  2t  1. (b) 

Hamming distance d(ci, cj)  2t. The received 
vector is denoted by r. 
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Figure 10.7 
Standard array for an (n, k) block code. 
















