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Chapter 9

Digital Filter Design

 Objective - Determination of a realizable
transfer function G(z) approximating a
given frequency response specification 1s an
important step in the development of a
digital filter

« Ifan IIR filter is desired, G(z) should b67

stable real rational function

Digital filter design 1s the process of
deriving the transfer function G(z)




Digital Filter Specifications

e For example, the magnitude response ‘G(ej®)|
of a digital lowpass filter may be given as
indicated below

|sei®s |

 As indicated 1in the figure, in the passband,
defined by 0= = w,. we require that
‘G(ejm)‘ =1 with an error *=3&,, i.e.,

1-8, < j(;(ef@)

<1+3,, |o=w

 In the stopband, defined byw,; = ® = 7T, we
require that ‘G(ej (”)‘ = O with an error &,
1.€.,

‘G(ej(’))

<38,, w,=|lo=7




- passband edge frequency
- stopband edge frequency
e 0O, - peakripple value in the passband
e O, - peak ripple value 1n the stopband

- Since G(e/®)is a periodic function of m,
and ‘G(e] “ )‘ of a real-coefficient digital
filter 1s an even function of ®

| As a result, filter specifications are given
only for the frequency range 0 < w <

 Specifications are often given in terms of

loss function A(w) = —2010g10‘G(8~’(’)) in
dB
« Peak passband ripple
o, =—20log,,(1-56,) dB

* Minimum stopband attenuation
o, =—20log,(d;) dB




Magnitude specifications may alternately be
given 1n a normalized form as indicated
below

Stopband

Here, the maximum value of the magnitude
in the passband 1s assumed to be unity

1/~/14+ &2 + Maximum passband deviation,

given by the minimum value of the
magnitude in the passband

111 t Maximum stopband magnitude




 For the normalized specification, maximum
value of the gain function or the minimum

value of the loss function 1s O dB

Smax = 201ogo(V1+£2 | dB

e For 8p << 1, 1t can be shown that

Omax = —20log;o(1—25,)dB

e In practice, passband edge frequency I,

and stopband edge frequency F, are
specified in Hz

 For digital filter design, normalized
bandedge frequencies need to be computed
from specifications in Hz using

Q 2ntF,
w,=—+=—=L=2nF,T
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Digital Filter Specifications

- Example - Let F, =7 kHz, F, =3 kHz, and
F; =25 kHz

 Then
3
®, :275(7><1(1 )=O.567t
25x10
3
. :2n(3x10 ):0.2471
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Selection of Filter Type

e The transfer function H(z) meeting the
frequency response specifications should be
a causal transfer function

- For IIR digital filter design, the IIR transfer
function is a real rational function of z7':

+-+ parz

—1 —2 M
H(Z)=p0+plz +p22
ot d Y

, M <N
do +dlZ_1 +d22_

2

e H(z) must be a stable transfer function and
must be of lowest order N for reduced
14 computational complexity
- For FIR digital filter design, the FIR
transfer function i1s a polynomaial in z—
with real coefficients:

H((z) = % hln]lz""

77=0

1

- For reduced computational complexity,
degree NV of H(z) must be as small as
possible

« If a linear phase 1s desired, the filter
coefficients must satisfy the constraint:

hln|l=x~hA| N —n]




« Advantages in using an FIR filter -
(1) Can be designed with exact linear phase,

(2) Filter structure always stable with
quantized coefficients

 Disadvantages in using an FIR filter - Order
of an FIR filter, in most cases, 1S
considerably higher than the order of an
equivalent IIR filter meeting the same
specifications, and FIR filter has thus higher
computational complexity



Digital Filter Design:
Basic Approaches

Most common approach to IIR filter design -
(1) Convert the digital filter specifications
into an analog prototype lowpass filter
specifications

(2) Determine the analog lowpass filter
transfer function / _(s)

(3) Transform £/ _(s) into the desired digital
transfer function G(z)

This approach has been widely used for the
following reasons:

(1) Analog approximation techniques are
highly advanced

(2) They usually yield closed-form
solutions

(3) Extensive tables are available for
analog filter design

(4) Many applications require digital
simulation of analog systems




« An analog transfer function to be denoted as
£, (s)
D, (s)
where the subscript “a” specifically
indicates the analog domain

H,(s)=

« A digital transfer function derived from # _(s)
shall be denoted as

G(z) =

£2(z)

D(z)

e Basic idea behind the conversion of H_(s)
into G(z) 1s to apply a mapping from the
s-domain to the z-domain so that essential
properties of the analog frequency response
are preserved

 Thus mapping function should be such that
— Imaginary (j€2) axis in the s-plane be
mapped onto the unit circle of the z-plane

— A stable analog transfer function be mapped
into a stable digital transfer function



Digital Filter Design:
Basic Approaches

e Three commonly used approaches to FIR
filter design -

(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods

[IR filter design from analog:
a) impulse-invariant

b) bilinear transform approach,
c¢) spectral transformations




Lecture 15

Bilinear Transformation Method of
lIR Filter Design



lIR Digital Filter Design: Bilinear
Transformation Method

e Bilinear transtformation -

¢ — 2(1-z"
T\1+z!

» Above transformation maps a single point
in the s-plane to a unique point in the
z-plane and vice-versa

 Relation between G(z) and H (s) 1s then

given by [ |
G(2) = H,(5)_gf i)

T -1

l+z




 Digital filter design consists of 3 steps:

(1) Develop the specifications of H (s) by
applying the inverse bilinear transformation
to specifications of G(z)

(2) Design H (s)

(3) Determine G(z) by applying bilinear
transformation to H,(s)

» As aresult, the parameter 7" has no effect on
G(z) and T'= 2 1s chosen for convenience

AN

Simplified Bilinear Transform




e Inverse bilinear transformation for 7= 2 1s

_1+s
1—s

A

e Fors=oc,+ jQ,

(l+c, )+ jQ, > (1+0,)°+Q2
z = : = |z|” = 5 S
(1-0,)—Jj<, (1-c,) +QF

e Thus, c,=0—z|=1

c,<0—|z/<1

c,>0—>|z>1



* Mapping of s-plane into the z-plane

§.9 Imz

s -plane Z -plane




For = = ¢/® with T= 2 we have

—jo —jO)/Z Jo/2 —]0)/2
0O — l—e _ (e
J _l_l_e—jco e—_]C)/Z(e_]C)/Z —j(o/2) /
_ J2sm(e/2)
= jtan(®/2)
2cos(®/2)

or | Q) = tan(®/ 2)|

Q

=

7
» Mapping 1s highly nonlinear
» Complete negative imaginary axis in the s-

plane from| €) — —oo to Q) = 0| 1s mapped into
the lower half of the unit circle 1in the z-plane
from|z=—1 to z=1

» Complete positive imaginary axis in the s-
plane fronLQ =0 to Q= ofis mapped into the
upper_half of the unit circle 1n the z-plane
from|z=1 toz=-—1




« Nonlinear mapping introduces a distortion
1n the frequency axis called frequency
warping

 Effect of warping shown below

0 Q = tan(®@/2)
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o Steps mn the design of a digital filter -
(1) Prewarp (©,.0;) to find their analog
equivalents (€, Q,)
(2) Design the analog filter /,(s)
(3) Design the digital filter G(z) by applying
bilmear transtormation to H (s)

* Transformation can be used only to design

digital filters with prescribed magnitude
response with piecewise constant values

* Transformation does not preserve phase
response of analog filter

A



IIR Digital Filter Design Using
Bilinear Transformation

e Example - Consider First order Butterworth LP digital filter
QC’
s+
« Applying bilinear transformation to the above

we get the transfer function of a first-order
digital lowpass Butterworth filter

_ L Q. (1+z1)
G(2)=H, (S)L:% - (1— z-l) +Q_(1+ z-l)

H,(s) =

1+=

 Rearranging terms we get

- 1

2 l—ax=z

1

where
1—-Q_. 1—tan(om,/2)
1+, 1+ tan(om, /2)

oL
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See book examples

* Second order Bandstop digital filter (next)



- Example - Consider the second-order analog
notch transfer function

57+ 02
s + Bs+ QZ
for which |H_ (<, )|=0
[, (GO = |H (G| =1
« Q) 1is called the notch frequency

- If |H,(jO)|=|H,(J)|=1/~/2 then
I B =Q, —Q), 1s the 3-dB notch bandwidth
e Then G(z)=H_,(s)

H,(s)=

P
1+ =

1+ —20-QH)z'+1A+Q2)z~
1+Q2+B)— 20—z '+1+Q2 —B)z
l+ax  1-2Bz +z°
2 1-28Q+a)zt+az=

1+Q2—B 1—tan(B,./2)
1+0Q2+ B l+tan(B,,/2)

1— Q“
B = = Ccos M,
1+ Q; Copyright © 2005, S. K. Mitra

=il

=

where o =




« Example - Design a 2nd-order digital notch
filter operating at a sampling rate of 400 Hz
with a notch frequency at 60 Hz, 3-dB notch
bandwidth of 6 Hz

e Thus o, =21(60/400)=0.37

B, =21(6/400)=0.037

* From the above values we get

o =0.90993
B=0.587785

e Thus

0.954965—1.1226287z71 +0.954965z~2
1-1.1226287z71 +0.90993z2

G(z) =

 The gain and phase responses are shown below
2
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