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2.1 Discrete time signals

2.1.1 Time domain representation
Length of a discrete time signal

 Finite length

e Infinite length

« Appending with zeros (zero padding)

« Right sided sequence = causal sequence
 Left sided sequence = anti causal sequence
» Two-sided sequence
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Figure 2.4: (a) A right-sided sequence and (b) a left-sided sequence.



The discrete-time signal may be a finite-length or an infinite-length sequence, A finite-length (lso called
finite-duration or finite-extent) sequence is defined only for a finite time interval:

(2.5)
Ny 2 Ny. The length or duration N of the above finite-length

N=Ny—- Ny +1. Qr) (2.6)

A length-N discrete-time sequence consists of N samples and is often referred to as an N-point sequence.
A finite-length sequence can also be considered as an infinite-length sequence by assigning zero values to
samples whose arguments are outside the above range. The process of lengthening a sequence by adding

zero-valued samples is calle@ng with zeros or zem-pg%@
There are three types of infinite-length sequences. ATight-sided sequence x[n] has zero-valued samples

forn < Njp; that s,

x[r] =0  forn < Ny, (2.7)
where N1 isa finite i at can be-pesitive or negative. If Ny > U, right-sided sequenee is usually
e Likewise, a left-sided sequence x[n] has zero- es forn > Nj; that

(2.3)

sequence i




Size of discrete time signal

L1-Norm : the mean absolute value

L2-norm : root mean squared (rms) value
Loo-norm : the peak absolute value

The norm of the finite length sequence can be
computed using the M file norm in MATLAB

The norm provides an estimate of the size of a signal.



Sampling a
Continuous Signal

e Obtain a sequence of signal samples
using a periodic instantaneous sampler:

X[n]=x(n1)

» Often plot discrete signals as dots or
“lollypops™:
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991 Some Basic Sequences

n OO Qe Qe Qs Qe e ]
43210123456 -43-2-10123456
(a) (b)

Figure 2.14: (a) The unit sample sequence {3[n]} and (b) the shifted unit sample sequence {S[n -2]}.
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Flgure 2.15: (a) The unit step sequence {x[n]} and the shifted unit step sequcnce {uln + 23}



Elementary Operations

Let x[n] and y[n] be two known sequences. By fornding the pmduct of the sample values of these two
sequences at each instant, we form a new sequence w) [n]:

wy[n] = x[n] - y[n]. (2.12)

In some applications, the product operation is also known as modulation. The device implementing the
modulation operation is called a modulator, and its schematic representation is shown in Figure 2.5(a).

x[n) }__ w,[n]
yln]

w,[n] = x(rly(n]




An application of the product operation

i in forming a finite-length sequence from an infinite-length

sequence by multiplying the latter with  finite-length sequence called a window sequence. This process

of forming the finite-length sequence is usually called windowing, which plays an important role in the
design of certain types of digital filters (Section 10.2). Another application of the product operation is

iHlustrated in Example 2.10.



The second basic operatibn 1§ the scalar multiplication, whereby a new sequence 15 generated by
multiplying each sample of a sequence x[n] by a scalar A:

wy[n] = Ax[n).

(2.13)

The device implementing the multiplication operationis called a ulfiplier; and its schematic representation

15 shown in Figure 2.3(b).




The third basic operation is the addition by which a new sequence w;([n] is obtained by adding the
sample values of two sequences x[n] and y[n]:

w3ln] = x[n] + y[n]. (2.14)

The device implementing the addition operation is called an adder, and its schematic representation is
shown in Figure 2.5(c). By inverting the signs of all samples of the sequence y[n] an adder can also be
used to implement the subtraction operation. |

.- x[n] |

y[n]

wy[n] = x[n] +yln]




A very simple|application of the addition operation |is in improving the quality of measured data that
has been corrupted by an additive random noise. In many cases, the actual uncorrupted data vector s
remains essentially the same from one measurement to the next, while the additive noise vector is random
and not reproducible. Let d; denote the noise vector corrupting the i-th measurement of the uncorruptcd
data vector s: |

X; =s+d;.

The average data vector, called the ensemble average, obtained after K measurements is then given by

i —Z( x;) = Z(s+d,) =s+— (Z“*)

=1 I-I

For a very large value of K, X,y is usually a reasonable replica of the desired data vector s, as the samples

of the average of the summed noise vector I(E — d;) become very small due to the randomness of the
noise. Example 2.1 illustrates ensemble averaging.



% Program 2_1

% Generation of the ensemble average
%

R =50;

m = 0:R-1;

s = 2"'m.*(0.9.Am);

% Generate the uncorrupted signal
d = rand(R,1)-0.5;

% Generate the random noise

x1 = s+d’;

stem(m,d);

xlabel("Time index n');
ylabel('Amplitude’);

title('Noise');

Pause

stem(m,x1);

xlabel("Time index n');
ylabel('Amplitude’);

title(‘Signal with Noise');

pause
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1 K
Xave = E ;(xi)

for n =1:50;

. d =rand(R,1)-0.5;

. x=s+d
x1=x1+X;

end

1 =x1/50;

 stem(m,x1);

« xlabel('Time index n');

« ylabel('Amplitude’);

« title("Ensemble average’);
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Original uncorrupted data

Time index n

(a)

Figure 2.6: (a) The original uncorrupted sequence s[n] and (b) the noise sequence d;[n].
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Figure 2.7: (a) A sample of the corrupted sequence and (b) the ensemble average after 50 measurements.

An application of
- Secnoprls " 1n ensemble averaging is in the power spectrum estimation of a random signal, discussed




The fime-shifting operation illustrated below in Eq. (2.16) shows the relation between x[n] and its
time-shifted version wy[n]:

wy[n] = x[n — N], (2.16)

where N is an integer. If N > 0, it is a delaying operation, and if N < 0, it is an advancing operation. For
N = 1, we have the input—output relation

waln] = x[n — 1],

and the device implementing the delay operation by one sample period is called a unit delay. In terms of
z-transform, introduced later in Chapter 6, the above relation can be rewri

Wa2) = 271X (2),

wWhere Wi(z) and X (7) are, respectively, the z-transforms of the output sequence wy[n] and the input
sequence x[n]. Itis a usual practice to represent schematically the unit delay operation using the symbol
7™, as shown in Figure 2.5(d).



The opposite of the unit delay operation is the unit advance operation defined by

which in terms of the z-transform is given by

|

Ws(z) = 2 X(2).

ws(n] = x[n + 1],|./

As a result, the unit advance operation is commonly represented schematically using the symbol z, as

shown in Figure 2.5(e).

The time-reversal operation, also called the folding operation, is another useful scheme to developa

new sequence. An example is

we(n)

= x[~-n],

which is the time-reversed version of the sequence x[n].
In Figure 2.5(f), we show a pick-off node, which is used to fecd a sequence to different parts of a

discrete-time system.

(2.17)

x[n] s =1 f—> w,[n]

w,ln] = x[n-1]
()

x[n]

wsln] = xin+1]

(e)

> wsln)

x[n] —I—- x[n]

x[n]

- (D




EXAMPLE 2.2 Hasir: Operatiuns on Sequences of Equal Lengths
Consider the following two _seqﬂenﬁes'ﬂf_ lehgﬁ 5 de-ﬁne-ad ft;':r 0<n 5 4
c[n] = {3.2, 41, 36, ._: —-9.5, -“0},
| dln]=(17, -05, 0, 08, 1}
Several new sequences of length 5 génera_teﬂ ﬁ'om the above iséqmﬁﬁe:s are giﬁn b}'.

wiln) = cln]-d[n] = (544, =205, 0, =76, 0,
waln) = clal +dln] = (49, 405, 36, —87, 1},
©wslel = Seln] = (112, 1435, 126, —=33.25, 0}.

As indicated by Example 2.2, operations on two or more sequences to gencrate a new Sequence ¢l
ve carried out if all sequences are of the same length and defined for the same range of the time index n.
However, if the sequences are not of equal length, all sequences can be made to have the same range of
the time index n by appending zero-valued samples to the sequence(s) of smaller lengths. This process is

ilustrated in Example 2.3,



EX&MP’LE 2. 3 Basm Operahnns on Sequences of Unequal Lengtlls

Cunsader a sr:qucnc:e {g[n]] nf length 3 deﬁned fnr 0 < n < 2 gwen by

.....

=21, 15 3} e

Iti is clear that we : cannot develop annther sequ.ance hy ﬂperatmg on th1s sequeﬂée and any one uf the lcngth-f
sequences of Example 2.2. HGWEVEI' it is pusmble to z:eat [g[n}] as a sequﬁncﬂ ost’ lf:ngth 5 and deﬁnecl for
0<n<g 4by appendmg 1t wlth two zeru valued samplcs i T e e -

[3;*{"-}} = [ 21

Examples nt‘ new sequences gtnerated from {g,g[n]} ancl c[n] uf the prcwnus cxample are mdmated heiow

{w4[n]}m[c‘[n] ga[n]] -.{ 6?2 615 1.03 0 0}
",;{wat_n]; )+ gelnl) = (=178, 425, ¥, -95. 0}




Combination of Elementary Operations

In most applications, combinations of the above elementary operations are used. Ilustrations of such
combinations are given in Example 2.4.

EXAMPLE 2.4 Dlustration of Combination of Basic Operations on Sequenc:

We next analyze the discrete-time system of Figure 2.8, Observe first that the two left-most delay blocks generate -
the sequences x[ — 1] and x[r — 2], whereas the two right-most delay blocks develop the sequences y[n — 1] and:
yln — 2]. These delayed sequences, along with x[n], are then applied to the five multipliers, labeled bo, by, ba,
a1, and ay, developing the sequences box[n], byxin — 13, byx[n —2], ayln — 1], and azy[n - 2, which are then

Jinl = boxlal 4 bixn — N+ bpxln= 2 4 apyln— lfaplni=21. @18

x[n)

» y[n]

PO

*n-2] 'D - 24- yn-2]

Figure 2.8: Discrete-time system of Example 2.4.
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Figure 2.9: Representation of basic sampling rate alteration devices: (a) up-sampler and (b) down-sampler.

Sampling Rate Alteration

Another quite useful operation is the sampling rate alteration that is employed to generate a new sequence
with a sampling rate higher or lower than that of a given sequence. Thus, if x[n] is a sequence with a

npling rate of Fr Hz and it is used to generate another sequence y[n] with a desired samplm g rate of
F! r Hz, then the sampling rate alteration ratio is given by

\ .

If R > 1, the process is called interpolation and results in a sequence with a higher sampling rate.
The discrete-time system implementing the interpolation process is called an interpolator. On the other
hand, if R < 1, the sampling rate is decreased by a process called decimation. The discrete-time system
implementing the decimation process is called a decimator..

(2.19)



Thle basic operations employedin the sampling rate alteration process are called up-sampling and down-
sampling. These operations play important roles in multirate discrete-time systems and are considered in
Chapters 13 and 14

In up-sampling by an integer factor L > 1, L = 1 equidistant zero-valued samples are inserted by

the [up-sampler jbetween each two consecutive samples of the input sequence x[n] to develop an output
sequence x,[n] according to the relation

x[n/L), n=0,%L,£2L,...,
0,  otherwise,

The sampling rate of x,[n] is L times larger than that of the original sequence x[n].

xy[n] = (2.20)




Classification Based on Symmetry

A sequence x[n] is called a conjugate-symmetric sequence if x{n] = x*[-n]. A real cﬂnjcugﬁtt-symmm.c
sequence is called an even sequence. A sequence x[n] 1s called a cnnjugarf-anrxs}'mnwtnc Sequence if
%[n] = —x*[~n]. A real conjugate-antisymmetric sequence is called an ' Sequence. For a conjugate-
antisymmetric sequence x[n], the sample value at n = 0 must be purely imaginary. Consequently, for an
odd sequence x[0] = 0. Examples of even and odd sequences are ahqwn in Figure 2.}2, |

I 1t T m i, 1 I S
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Figure 2.12: (a) An even sequence and (b) an odd sequence.
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Any complex sequence x[n] can be expressed as a sum of its conjugatc-syhmctric part xos(n] and its
conjugate-antisymmetric part x;[n '

x[n] = xes[n] + XealR); (222)

where
Kesln] = 5 (x[n] + 2*{=n)), (2232)
Xaln] = 5 (x[n] = x*[-n]) . (223)

As indicated by Eqs. (2.23a) and (2.23b), the computation of the conjugate-symmetric and conjugate-
antisymmetric parts of a sequence involves conjugation, time-reversal, addition, and multiplication opera-
tions. Because of the time-reversal operation, the decomposition of a finite-length sequence into a sum of &
conjugate-symmetric sequence and a conjugate-antisymmetric sequence is possible, if the parent sequence
is of odd Jength defined for a symmetric interval, -M <0 < M.



Consider the finite length sequence

{g[n]}={0, 1+j4, -2+3, 4-j2, -5-i6, -2, 3}

Find its conjugate symmetric part and its conjugate antisymmetric part

[3 [ﬂ]}_{ﬂ ]. 4 .__13 4?12 KA

whose Ume-reversed version is thcu g:we:n b}'

{g [—nn—{s i, ,5+ ;6 4+;2 -z ;3 1-

Usmﬂ Eq. {2 23a), we thus arm'c at. el £ A ARG
=0, 05+.r3 st :4 5,4 3545, 05~ j3, 13}
ukewise;-.;ssmggaq. _(2..23};‘}; wgt | i__z g -;j;-.

Tt can be easily verified that gesfn] = g&(~n] and gealn] = ~g&[=n].



Periodic and Aperiodic Signals

A sequence x|n] satisfying
@ FKN] @ (2.26)

is called a periodic sequence with a period N, where N is a positive integer and k is any integer. An
example of a periodic sequence that has a pennd N=1 samples 18 shuwn in Figure 2.13. A sequence 1s
called an aperiodic sequence if it is not periodic. To distinguish-aqeeriodic sequence from an aperiodic
sequence, we shall denote the former with n top. The ﬁmdamfnm! pe‘rmd N of a periodic signal
is the smallest value of N for which Eq. (2.26) holds.
Sum of two or more periodic sequences is also a periodic sequence. If x,[#] and x;[n] are two periodic
sequences with fundamental periods N, and Nj, respectively, then the sequence ¥[n] = Xq[n] + xp[n] 1s
a periodic sequence with a fundamental period N given by

~ NNy
~ GCD(N;, Ny)'

(2.27)

where GCD(N,, Np) 1s the greatest common divisor of N, and Np.



Energy and Power Signals |
The total energy of a sequence x[n] is defined by

=Y I, | (2.28)
n=-—00

An infinite-length sequence with finite sample values may or may not have finite energy, as illustrated in
Example 2.6. | -

The average power of an aperiodic sequence x[n] is defined by
K
> x[nP. (2.31)
n=—K
The average power of a sequence can be related to its energy by defining its energy over a finite interval
—K <n<Kas

= kL
Pr= im




K '
b= 2 x[nl. (232)
n=-—K

Then,

P = lim —. &k (2.33)

K00 2K + 1

The average power of a periodic sequence x{n] with a period & is given by

1 N-1
- =rn112
Pe= ) il | (2.34)
n=0 s ‘

The average power of an infinite-length sequence may be finite or infinite.

An infinite energy signal with finite average power is callcikcwisc, a finite energy
signal with zero average power is called s ' exampie of a power signal is a periodic
sequence that has a finite average power but infifiiteenergy. An example of an energy signal is a finite-length
sequence which has finite energy but zero average power.




Other Types of Classification

A sequence x[n] is said to be bounded if each of its samples is of magnitude less than or equal to a finite

positive number By, that is, -
|x[n]| < By < oo0. (2.35)

The periodic sequence of Figure 2.13 is a bounded sequence with a bound B, = 2.

A sequence x[n] is said to be absolutely summable if

Y Ix[n]l < oo (2.36)

AR=—00

A sequence is said to be squam-summﬁbfe if

> Il < . (2.37)

n=-—00



: able sequence therefore has finite energy and is an energy signal if it also has zero power.
An example of a sequence that is square-summable but not absolutely-summable s |

sin wen
xg[n] = , =00 <n<.
n

Examples of sequences that are neither absolutely-summable nor square-summable are
xp[n] = sinwcn, —00 < n < 09,
xnl=K, —00 <N <X,

where K is a constant.
The sequence [n] obtained by adding an absolutely summable sequence x[n] with its replicas shifted
by integer multiples of N, - |

5inl= Y xln+kN], | (2.38)

where N is a positive integer, is a periodic sequence with a period N. The periodic sequence y[n] is called
an N-periodic extension of x{n].



