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2.2 Typical sequences and sequence representation

2.21 Some Basic Sequences

The most common basic sequences are the unit sample sequence, the unit step sequence, the sinusoidal
sequence, and the exponential sequence. These sequences are defined next.

Unit Sample Sequence

The simplest and one of the most useful sequences is the unit sample sequence, often called the discrete-time
impulse or the unit impulse, as shown in Figure 2.14(a). It is denoted by 8[n] and defined by

5[n] = { (1): " :g’. (2.39)

The unit sample sequence shifted b

Figure 2.14(b) shows d[n — 2]. We shall show later in this section that any arbitrary sequence can be
represented as a sum of weighted time-shifted unit sample sequences. In Section 2.6.1, we demonstrate
that a certain class of discrete-time systems is completely characterized in the time-domain by its output
response to a unit impulse input. Furthermore, knowing this particular response of the system, we can
compute its response to any arbitrary input sequence.
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Figure 2.14: (a) The unit sample sequence {§[n]} and (b) the shifted unit sample sequence {8 [n —2]}.
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Figure 2.15: (a) The unit step sequence {x[n]} and the shifted unit step sequence {u[n + 2]}.



Unit Step Sequence

A second basic sequence is the unit step sequence, shown in Figure 2.15(a). It is denoted by p[n] and is

defined by

The unit step sequence shifted by k samples is thus givenby

Figure 2.15(b) shows u[n + 2].

The unit sample and the unit step sequences are related as follows (Problem 2.3):
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Sinusoidal and Exponential Sequences

A commonly encountered sequence is the rea! sinusoidal sequence with constant amplitude of the form

x[n} = Acos(won + ¢),

—00 <N <QQ,

(242)

Where A, w,, and ¢ are real numbers. The parameters A, ,, and ¢ are called, respectively; the amplitude,
the angular frequency, and the phase of the sinusoidal sequence x{n].

Figure 2.16 shows dafferent types of sinusoidal sequences. The real sinusoidal sequence of Eq. (2.42)

can be written alternatively as w

where x;[n] and x,[n] are, respectively, the in-pkéise and the guadrature components of x[n}, and are given

xi[n] = A cos @ cos(wpn),

Xqln] = —Asin g sin(w,n).

(243)

(244)
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Figure 2.16: A family of sinusoidal sequences given by x[n] = 1.5 cos w, (a) w, 0, (b)w 0.1
(©) wo = 0.27, (d) wo = 0.87, (€) wpo =

» o =
—'0‘9”'(0“’0 =7t,(g)wo = l.ln',and(h)a)o = 1.2x.



Another set of basic sequences is formed by taking the nth sample value to be the nth power of a real
or complex constant. Such sequences are termed exponential sequences, and their most general form is

given by

x[n] = Aa", —00 < n < 00, (2.45)

where A and o are real or complex numbers. By expressing

q = ePoti®d A |A el?, |
we can rewrite Eq. (2.45) as ;
x[n] = A elGotiwoln |A| e%0" g (won+¢) (2.46a)
= |A| %" cos(won + @) + j | A| €7°" sin(won + ¢l) (2.46b)

to arrive at an alternative general form of a complex exponential sequence where o,, ¢, and w, are now
real numbers. If we write x[n} = x..[n] + jxim[n], then from Eq. (2.46b),

xre[n] = |A| €7" cos(won + @),

Xim[n] = |A| €%°" sin(won + ¢).

Thus, the real and imaginary parts of a complex exponential sequence are real sinusoidal sequences with
constant (¢, = 0), growing (g, > 0), or decaying (0, < 0) amplitudes for n > 0. Figure 2.17 depicts a
complex exponential sequence with a decaying amplitude. Note that in the display of a complex exponential
sequence, its real and imaginary parts are shown separately.
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Figure 2.18: Examples of real exponential sequences: (a) x[n] = 0.2(1.2)", (b) x[n] = 20(0.9)".



Assignment (1)

Matlab Exercises
Example 2.8: Determination of the period of sinusoidal sequence

Example 2.9: Generation of a sequence wave sequence
Assignment (2)

page 115, M2.1,3,4

Due date next week



2.2.2 Sequence Generation Using MATLAB

VIATLAB includes a number of functions that can be used for signal generation. Some of these functions
)f interest are

exp, sin, cos, square, sawtooth

For example, the code fragments to generate a length-N complex exponential sequence with an exponent
2 + jb and of the form shown in Figure 2.17 is given by

n
X

1:N;
K*exp({a + b*i)*n);

The complete code is given in Program 2 2. Likewise, the code fragments to generate a length-N + 1 real
’ exponential sequence with an exponent a and of the form shown in Figure 2.18 is given by

Il
X

0:N;
K*a. n;

The complete code is given in Program 2 3. Another type of sequence generation using MATLAB can be
found earlier in Example 2.1. | -



% Program 2_2
% Generation of complex exponential sequence
%
a = input('Type in real exponent =');
b = input('Type in imaginary exponent =');
c=a+b*i;
K = input('Type in the gain constant =');
N = input ('Type in length of sequence =');
n=1:N;
%Generate the sequence

stem(n,real(x)); %Plot the real part

xlabel('Time index n');
ylabel('Amplitude’);
title('Real part');

disp('PRESS RETURN for imaginary part');
pause

stem(n,imag(x));%4Plot the imaginary part

xlabel('Time index n');ylabel('Amplitude’');
title('Imaginary part');



% Program 2_3

% Generation of real exponential sequence
%

a = input('Type in argument = ');

K = input('Type in the gain constant = ');

N = input (‘Type in length of sequence =");

n = 0:N;
X = K*a.Mn;
stem(n,x);

xlabel('Time index n');ylabel('Amplitude');
title(["\alpha = ',num2str(a)]);



2.2.3 Representation of an Arbitrary Sequence

An arbitrary sequence can be represented in the time-domain as a 'wciglitad sum of a basic sequence and
its delayed versions. A commonly used basic sequence in the representation of an arbitrary sequence is
the unit sample sequence. For example, the sequence x[n] of Figure 2.21 can be expressed as

2in] = 0.580n + 2] + 1.58(n — 1] — 8l — 2] + 8[n — 41+ 0.75 8[n — 6]. 2.52)

An implication of this type of representation is considered later in Section 2.5.1, where we develop the
general expression for calculating the output sequence of certain types of discrete-time systems for an
arbitrary input sequence.

Since the unit step sequence and the unit sample sequence are simply related through Eq. (2.41a), it is
also possible to represent an arbitrary sequence as a weighted combination of delayed unit step sequences
(Problem 2.6)
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Figure 2.21: An arbitrary sequence x[n].




2.3 The Sampling Process

We indicated earlier that often the discrete-time sequence is developed by uniformly sampling a continuous-
time signal x,(f), as illustrated in Figure 2.2, The relation between the two signals is given by Eq. (2.2),
where the time variable ¢ of the continuous-time signal is related to the time variable 7 of the discrete-time

signal only at discrete-time instants , given by

n 2nn
fn_=nT=—-=-——

Fr  Qr’

(2.53)

with Fr = 1/T denoting the sampling frequency and Q7 = 27 Fr denoting the sampling angular

frequency. For example, if the continuous-time signal is

%a(8) = Acosrfot + @) = Acos(Qt +90),

(2.54)



the corresponding discrete-time signal is given by

x[n] = Acos(QonT + @)
272,
= Acos ( g n+ t,f)) = A cos(w,n + ¢), (2.55)
T
where
o= 2 _ar (2.56)
Qr

is the normalized digital angular frequency of the discrete-time signal x[n]. The unit of the nommﬁmd
digital angular frequency w,, is radians per sample, while the unit of the normalized analog angular gre-
quency §2, is radians per second and the unit of the analog frequency f, is hertz if the unit of the sampling
period T is in seconds.

See Example 2.11



{ ) (Aliasing

x(2)

3 ™ 7

gl
|

1
1
A8
1
L
Y

N
e

o o o o

NI L S

-0.
-0.
-0.

\
4 AN
) \.h,/ L o5 \4'/ -

-
-
Bt

_,-l—"'.-

1
8
(3]
4
2

| 8
I I
41t
(3]
8
-1

xl[t) =cos2mw Ft, F =05Hz

-t = - = x,(t)=cos27 F,t, F,=15Hz
F. =2 samplesisec =  x,(n7Ts)=x,(nTs)
Two sinusoidal signals are indistinguishahble from their sampled versions whenever
F_ + F| isamutiple of the sampling rate £
the solid line describes a 0.5Hz continuous-time sinusoidal signal and the dash-dot line describes a 1.5 Hz continuous time sinusoidal signal.
When both signals are sampled at the rate of Fs equals two samples/sec,
their samples coincide, as indicated by the circles in the figures. This means that x one of n (T sub s) is equal to x two of n (T sub s) and there

is no way to distinguish the two signals apart from their sampled versions.

This phenomenon, known as aliasing, occurs whenever F2 plus or minus F1 is a multiple of the sampling rate



Amphude

Figure 2.22: Ambiguity in the discrete-time representation of continuous-time signals. gy (t) 1s shown mﬂjilh the solid
line, g3 (¢) is shown with the dashed line, g(r) is shown with the dashed-dot line, and the sequence obtained by

sampling is shown with circles,
Frequency =3, 7, 13 Hz, sampling rate = 10 Hz with T=0.1 sec
g1[n]=cos(0.6 .pi. n), g2[n]=cos(1.4 .pi. n), g3[n]=cos(2.6 .pi. n)

As a result all three sequences above are identical and it is difficult to
Associate a unigue continuous time function with any one of these sequences



In the general case, the family of continuous-time sinusoids

xorlt) = AcosE(Qet +6) +KQrr),  k=0,£142,... (2.57)
leads to identical sampled signals: |
| 2m(Q +kQ
%ok (nT) = Acos (R +kQr)nT +¢) = Acos ( i oS-z: th + ¢)
= A cos (ZIQQGH + ¢) = A cos(wen + @) = x[n]. (2.58)
T

ve ohenomenon of a continuous-time sinusoidal signal of higher frequency acquiring the
identity of a sinusoidal sequence of lower frequency after sampling s called aliasing. Since there are an
infinite number of continuous-time functions that can lead to a given sequence when sampled periodically,
additional conditions need to be imposed so that the sequence {x[n]} = {x, (nT)) can uniquely represent
the parent continuous-time function x,(t). In which case, xo (1) can be fully recovered from a knowledge
of {x[n]}.
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Determine the d;scretc tnne mgnal v[r;] obtmned by umfemxly samphng a contmuous-nme i gnai u,,(r) composed
of a weighted sum of five sinusoidal SIgnals of frcqucncws 3{} Hz 150 Hz i?ﬂ Hz, 25{} I-«iz anﬁ 33{} Hz at &
5dmphna rate nf 200 Hz as gwen bels}w T lEah T ' :

?

va (r) = Gcos(ﬁﬂm} + 3 sm(SOOm} +32 503{349:11} '+ 4 cos(SClUm) + 19'51&(6601:1!)
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o _ -I-4u::os{(’2n' +0. Sn')n}-i-lﬂsm{(!iﬂ: 07!1')?1}
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IG 5111(0 Tm:), rcsu]tma in a

U[n] = Scos(ﬂ 3;rn) + Scos(ﬁ SJm + 0 6435) I!J sm(O ’Fmt) e i

c:orﬁpdséd '6f p’nly ﬂu'ee smusmdal sequences of no:mahzcd angular frequencles 0 3;: 0 59';, and 6 ’hr _
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Matlab Aliasing demo
Aliasing Demo (1)

The phenomenon of aliasing happens when the sampling frequency is less than twice the highest frequency of
band-limited input signal.

In this example, the input signal is a sinusoidal signal of frequency 1.8KHz.
Three output sound signals are generated in sampling rates 8KHz, 4KHz and 2.6667KHz respectively.

Among these three outputs, we can observe that the aliasing arises only at sampling frequency of 2.6667KHz,
which is less than twice of the highest input frequency 3.6KHz.

MATLAB file: aliasing.m



