EENG 479 : Digital Signal Processing (DSP)

Lecture #4:

2.4 Discrete Time systems
2.5 Time Domain characterization of LTI Discrete-Time Systems
2.6 Simple Interconnection Schemes

Prof. Mohab A. Mangoud

Professor of Wireless Communications (Networks, IoT and AI)
University of Bahrain, College of Engineering
Department of Electrical and Electronics Engineering
P.O.Box 32038- Kingdom of Bahrain
mmangoud@uob.edu.bh
http://mangoud.com

mailto:mmangoud@uob.edu.bh

2.4 Discrete Time systems
« 2.4.1 Discrete time system example:
— Accumulator
— Moving average filter ex2.13

— Median Filter ex2.14 |, prog 2.5 and Median Filter
Demo

2.4 Discrete-Time Systems ;

The function of a discrete-time system s to process a given input sequence to generate an output sequence.
In most applications, the discrete-time system used is a single-input, single-output system, as shown
schematically in Figure 2.23. The output sequence is generated sequentially, beginning with a certain
value of the time index , and thereafter progressively increasing the value of n. If the beginning time
index is n,, the output y[n,] is first computed, then y[n, + 1] is computed, and so on. We restrict our

attention in this text to this class of discrete-time systems with certain specific properties as described later
In this section.

Discrete-time
system
Input sequence Output sequence

x[n] —» — y[n]

Figure 2.23: Schematic representation of a discrete-time system.

In a practical discrete-time system, Al signals are digital signals,and operations on such signals also
lead to digital signals. Such a discrete-time system s usually called a digital filter. | However, if there is
o ambiguity, We shal refer to a discrete-time system also as a digital filter, whether or not it has been
implemented using finite precision arithmetic,

We consider here first several simple discrete-time systems that often find applications in practice. A
study of these systems also will provide us with insights into the operation of more complex systems. We

then describe several classifications of discrete-time systems. We next define two important characterisics
of a discrete-time system.

Systems

« A system transforms a signal into a new
signal or a different signal representation

x(t) — F()

— y(t)

» y(t) =F(x{®))

- Examples: y(t) = 27x(t)
y(t) = [x(®)]°
y(t) = x(t-2)

Systems (cont.)

A discrete-time system is the same
concept:
y[n] = 27°x[n]
y[n] = {x[n]}*
y[n] = X[n-2]
« Convert continuous-time signal to discrete-
time signal:

yln] =x(nTy), _
where T, is the sampling period

Discrete-Time System

* Input and Output are discrete-time
sequences:

ynl = F(xn))
« Some systems depend only on the
current input:

y[n]=5x|n]
y[nl=3(xnly

Systems

A system can be defined as an interconnection of operations that
transforms input signals into output signals. In the simplest case
— a single-input, single-output (SISO) system — we define an overall
operator H that describes the transformation of the input into the
output.

- In continuous time: y(t) = H{x(t)}.

. In discrete time: y[n| = H{x[n]}.

x(t)—1 H +—y(t) x[n]l— H ——y[n]

Continuous time Discrete time

This slide is copied from the [1]

Discrete time system examples

(2.59)

Accumulator
A very simple example of a slightly more complex discrete-time system is the accumulator, defined by the
input—output relation
n
yinl= Y x[f]
=—00
n-1
= Z x[€] + x[n] = y[n — 1] + x[n].
£=—00

The output y[r] at time instant n is the sum of the input sample value x[n] at time instant n and the previous
output y[n — 1] at time instant n — 1, which is the sum of all previous input sample values from —co to the
time instant n — 1. The system therefore cumulatively adds; that is, it accumulates all input sample values
from —o0 to #. The accumulator can be considered as a discrete-time equivalent of a continuous-time

integrator.
The above equation can also be written in the form

-1

=—00

yi= Y s+ Y xle)=y~11+Y 5[l n20.
£=0 =0

(2.60)

The second form of the accumulator is used for a causal input sequence, in which case y[—1] is called

the initial condition.

Moving-Average Filter

In Example 2.1, we pointed out that often data cannot be measured very accurately because of random
variations in the measurements, and in the case of the data being corrupted by an additive noise, the n-th
sample of the measured data x[r] is modeled as x[n] = s[n] + d[n], where s[n] and d[n] denote the
n-th samples of the data and the noise. As demonstrated in this example, if multiple measurements of the
same set of data samples are available, a reasonably good estimate of the uncorrupted data vector can be
found by evaluating the ensemble average. In applications where data measurements cannot be repeated, a
commonly used estimate of the data sample s[n] at instant n from M measurements of the noise-corrupted
data sample x[£] available for the range n — M + 1 < £ < n is the M-point average ot mean y[n] given by

1 M-1

yinl =+ tgo x[n — 4. (2.61)

An estimate of the spread of the mean value y[n] from the actual value s[n] is usually given by the
standard deviation defined by [Tha98]

2
= \/ s 0=yl .

The discrete-time system implementing Eq. (2.61) is usually called the M-point moving-average filter.
In most applications, the data x[r] is a bounded sequence, and as a result, the M-point average y[n] is also

Matlab implementation

M-=1
y[n] = l (Z x[n —]+ x[n — M] - x[n —_M])
N = ; M add

M
= i (EI[H — £+ x[n] — x[n -M])
M =1

M-1
=L (Z :c[n—l—f]+x[n]—1[ﬂ'—M])=
M £=0

5
) =yl = 11+ (xl) = 300 = M

2 add

% Program 2_4

% Signal Smoothing by a Moving-Averag
%

R = 50;

d = rand(R,1)-0.5;

m = 0:1:R-1;

s =2"m.*(0.9.*m);

x =s+d}

T

d[n]
s[n] (4
x[n]

Amplitude

e Filter

L
35

L I L L L
20 25 30 40 45

Time index n

I I I
0 5 10 15 50

plot(m,d,'r-',m,s,'b--'m,x,'g:")
xlabel('Time index n'); ylabel('Amplitude')
legend(‘'d[n]','s[n]','x[n]');
pause

M = input('Number of input sa
b = ones(M,1)/M;
y = filter(b,1,x);
plot(m,s,'r-',m,y,'b--")
legend('s[n]’,'y[n]);

xlabel ("Time index n');ylabel('Amplitude")

| FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the
_Ailfer described by vectors A and B to create the filtered
data Y. The filter is a "Direct Form Il Transposed"
implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

If a(1) is not equal to 1, FILTER normalizes the filter
coefficients by a(1).

1 M-1
y(n] = -M' z x[n —£}.

£=0

2.24: Pertinent signals of Example 2.13: s[n] is the original uncorrupted sequence, d[n] is the n_oisc

sequence, x[n] = s[n] + d[n), and y(n] is the output of the moving-average filter.

s[n]

Amplitude
Amplitude

s[n]

L L L r . L . . . L L L . L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30
Time index n Time index n

a delay of (-M - 1-) /2 samples is inherent in an M -pc')int movir;g-average filter.

L L L
35 40 45 50

Note: it is discrete signal

Amplitude
Amplitude
w
T

\I\/I=8 :

/
/
/
2L \

T

s[n]
yIn | |

. L L . . L . L L L L . r . L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30
Time index n Time index n

L
35

L L
40 45 50

original uncorrupted signal. The proper choice of M depends on the nature of the noise corrupting the
original signal. In some applications, higher quality smoothed output may be obtained by using a cascade

of identical moving average filters with a smaller value of M to process the noise-corrupted signal.

Exponentially Weighted Running Average Filter

The average computed using Eq. (2.61) places equal emphasis on all M data samples. In some applications,
it may be necessary to place more emphasis on data samples near the time instant n and less emphasis on
data samples that are further away in determining the average. Sych an average can be computed using
the exponentially weighted running average filter given by [Tha98]:

yinl=ayln—11+x[r]. O<a<l. (2.64)

Computation of the running average using the above equation requires only 2 additions and 1 multiplication.
Moreover, it requires only the storage of the previous running average and does not require the storage of
past input data samples. |

For0 < a < 1, the exponentially weighted average filter of Eq. (2.64) places more emphasis on current
data samples and less emphasis on past data samples by exponentially weighting the data samples. To
illustrate this property, we observe that y[n] can be rewritten as

y[nl = (ay[n — 2] + x[n — 1}) + x[n]
= a’y[n - 2] + ax[n — 1] + x[n]
= &? (ay[n — 3] + x[n — 2]) + ax[n — 1] + x[n]
=a’y[n — 3] + a’x[n ~ 2] + ax[n - 1] + x[n],

by substituting the expression for y[rn — 1] in Eq. (2.64) and then substituting the expression for y[n — 2]
in the subsequent expression. Since 0 < o < 1, it can be seen from the last equation given above that the
weights of past input data samples get progressively smaller at an exponential rate.

Linear Interpolator

Another example of a discrete-time system is the linear interpolator often employed to estimate sample
values between pairs of adjacent sample values of a discrete-time sequence. The linear interpolation is

*ul”] | piscrete-time '
*[n] —» T L —> system — yln]

Figure 2.25: A factor-of-L interpolator.

x[n] | x,[n]

e 1 I ;t.'. -ew ‘ o 4 . .] I-::I
0 l 2 3 {]123156?891{11112
(a) (b)

. ”‘\ yln]
- .8 I\] \r..3 4 .’!1 /‘ ln
01 2 "\1,’5 6 7 8 9 10 1112
(c)

Ficnre 2 26: Tlnstratinon of the linear internnlation method.

implemented by first passing the input sequence x([n] to be interpolated th{ough an up-sampler whose
output x,[n] is then passed through a second discrete-time system that “fills in” the zero—vglued samples
inserted by the up-sampler with values obtained by a linear interpolation of the pair of input sz}mples
surrounding the zero-valued samples, as indicated in Figure 2.25. The interpolated samples thus lie ona
straight line joining the pair of input samples, as illustrated in Figure 2.26 for a factor-of-4 interpolation.

Bilinear interpolation

We dcvafop thcrinpuf-output relation of a linear factor-of-2 interpolator. Here, if x, (] is a zero-valued
sample inserted between a pair of input samples, it is replaced with the average of the two original nput
samples, x,[n = 1] and x,[n + 1] :

3l = alnl + 4 (uln = 11+ 500 + 1) 65

On the other hand, if x,[n] is one of the original input samples, its neighbors, x,[n — 1] and x,[n + 1],
are both equal to 0. In this case, it follows from Eq. (2.65) that y[n] = x,[n], or, in other words, the input
sample is left unchanged. Thus, the cascade of the factor-of-2 up-sampler and the discrete-time system
defined by Eq. (2.65) implements a factor-of-2 interpolator. Equation (2.65) is aiso known as the bilinear
interpolation.

Median Filter

The median of a set of (2K + 1) numbers is the number such that K numbers from the set have values greater
than this number, while the other K numbers have values smaller. The median can be determined by rank-
ordering the numbers in the set by their values and then choosing the number at the middle. For example,

consider the set of numbers {2, —3, 10, 5, —1 .
Honce, med(2, ~3, 10, 5, —1} — 2. , 5, —1}. The rank-ordered set is given by {—3, —~1® 5, 10}.

" The median ﬁlrér 18 iniplenicnted by sliding a window of odd length over the input sequence {x[n]]

one sample at a time [Reg93],[Tuk74]. At any instant, the output of the filter is the median value of the
input samples inside the window. More specifically, the output sample y[n] at the nth instant of the median
filter with a window of length-(2K + 1) is given by

i) = med{xfn =), .., ln = 1] sl s + 1) .., {n + K] 26)

In practice, to process a finite-length sequence {x[n]} of length N by a median filter with a window of
length M, where M < N, (M - 1)/2 zero-valued samples are appended to both sides of the input sequence
(x[n]} to create a new sequence {x,[n]} of length N + M - 1 ;

01 _IM_;D'EHE_L
Xe[n] = xfn), 0<n<N-|,

0, N<ngN-14%0

The sequence {x,[n]} when processed by the median filter generates an output sequence {y[n]} also of
length N.

g Impulse noise corrupted signal g Median filtered noisy signal
7t Tt
6L {I% 6}
2 51 8 5t
2 4-°T E 4}
Tl 33-
5 v 2
| 1
oﬂ MYy 0
- . : . . -1 ; . . ;
10 10 20 30 40 50 0 10 20 30 40 &
i n
(a) (b)

Figure 2.28: (a) Impulse-noise corrupted signal and (b) output of a length-3 median filter.

The median filter finds applications in removing additive random impulse noise, which show up as
sudden large errors in the corrupted signal. In such cases, a linear lowpass filter, such as the moving-average
filter or the exponentially weighted average filter, not only smooths out the sudden large-valued errors in
the data but also distorts severely naturally occurring discontinuities in the original data. These types of

b L, L

2.4 Discrete Time systems

2.4.2 Classification of Discrete- Time systems
— Linear system .. ex 2.15,16
— shift invariant system .. ex 2.17
— causal system
— stable system ex 2.18,19,20
— passive and step responses

— Impulse and step responses ex 2.21,22,23

Classification of Discrete time
systems

Linear system=L
Shift invariant system=T]
Causal System

Stable System=BIBO
Passive and lossless systems

Linear System

The most widely used discrete-time system, and the one that we shall be concerned with throughout most
of this text, is a linear system for which the superposition principle always holds. More precisely, for a
linear discrete-time system, if y;[n] and y,(n] are the responses to the input sequences x[r] and x;[n],
respectively, then for an input

x(n] = ax)[n] + pxa[n],

the response is given by
yln] = ayn] + Bya(n]

The superposition property must hold for any arbitrary constants, o and 8, and for all possible inputs, x;[n]
and x3(n]. The above property makes it very easy to compute the response to a complicated sequence
that can be decomposed as a weighted combination of some simple sequences, such as the unit sample
sequences or the complex exponential sequences. In this case, the desired output is given by a similarly
weighted combination of the outputs to the simple sequences.

We examine the linearity property of the accumulator in Example 2.15.

Syl Lineanly Papady 4 He accumbln
F3

n n

}’1[”]22 xql/] yz[n]=z x5 (/]

[=—o0

[=—

ren
e O/P ‘é[nl dueTo an (anT _&:\'1[]]+,Bx2[[])

Wil=Y i)

[/

LAY = o<£z XKQ'L-W%QZ TR\

C Wl = o 30w\ 4 p KRENN

'H’M SJSTCW\ < LMC«M‘

* Prove that the median filter is
Nonlinear discrete time system

EXAMPLE 2.16 A Nonlinear Discrete: Time System

The median filter of Eq. (2 67) 15 4 nonlmc&r discrete-time system. To show this, consider a median filier with

cp <l
L window of length 3. The output of the median filer for an input sequence |. rm | (3,4 | “VJ,O_'_' n,.”; ,j,xn
1 length-3 sequence {,nﬂ'} (3,4, 4}, and that for an input sequence o] = (2,-1,-1},0 ¢n <48

length-3 sequence {ya[n]] = {0 -1, -l' On the other hand, the output for an input [x[n]] = - {x)[n] +22n]} 18
(he sequence {y[n]} = {3,4, 3; h can be seen that {y;[n) +ya[n]} = (3,33} is not equal to {y(n]}.

jI=

fedion Bllon with @ window [@Wﬂl =3
X Tnl = §= 9€y > WN=3
Xe] - [o 2 45 g‘mz@w@
M/ Gl =le -

XQ.LEV‘K Eo V:L_:[03/ 9
<1 V‘:\\/

Shift-Invariant System

The shifi-invariance property is the second condition imposed on most digital filters in practice. For &
shifi-invariant discrete-time system, if y;[n] s the response to an Input 1 (1], then the response to an input
o[n] = xy[n = o) s simply y[n] = yin - 1,], where n, is any positive or negative integer. This relation
hetween the input and output must hold for any arbitrary tmput sequence and its corresponding output, [n
the case of sequences and systems with indices related to discrete instants of time, the above restriction
is more commonly called the time-invariance property. | The time-invariance property ensures that for a

specified input, the output of the system s independent of the time the input is being applied.
It can be shown that the median filter of Eq. (2.67) is a time-invaniant system (Problem 2.37).

Causal System

In addition to the above two properties, we impose, for practicality, additional restrictions of causality and
stability on the class of discrete-time systems we deal with in this text. In a causal discrete-time system,
the n,th output sample y([n,] depends only on input samples x{n] for n < n, and does not depend on input

samples for n > n,. Thug if y\[n] and y;[n) are the responses of a causal discrete-time system to the
inpits 21[n] and i respecuively, then |

uilnl = wy[n] forn < N implies also that yiln] = y2[n] form < N.

-

Simply speaking, for a causal system, changes in output samples do not precede changes in the input
samples. It should be pointed out here that the definition of causality given above can be applied only to
discrete-time systems with the same sampling rate for the input and the output.5

It can be easily shown that the discrete-time systems of Egs. (2.18), (2.59), (2.60), and (2.61) are causal
systems. However, the discrete-time systems defined by Egs. (2.65) and (2.66) are noncausal systems.
It should be noted that these two noncausal systems can be implemented as causal systems by simply
delaying the output by one and two samples, respectively.

Stable System

There are various definitions of stabillty We define a discrete-time system to be stable if and only if for
every bounded input, the output is also bounded. This implies that, if the response to x[n] is the sequence

y[n] and if

lx[n]l < By for all values of n, then, |y[n] < By

for all values of n where B; and B, arg finite positive constants. Tﬂxs type of stablhty is usually referred
to as bounded-input, bounded-outpu (BIBO) ytability.

Passive and Lossless Systems

A discrete-time system is said to be passive if, for every finite energy input sequence x[n], the output
sequence y[n] has, at most, the same energy; that is,

o0 o2

Yyl) ki) < oo (2.70)

A== A==—0

If the above inequality is satisfied with an equal sign for every input sequence, the discrete-time system is
said to be lossless.

EXAI\GPLE 2. 20 A Passive Dlscrete-'l‘ime S;ystem e

Consldcr the mscmm'uma system deﬁned by y[na] = a:x[r: - N] w1th N a pOElflVE mteger Its ﬂutput energy 15
gwenby RN e ey LR AT

Hence 1[1sapassive systcm 1f iai =i and is &lusslcss system tf Iﬂsl = 1

As we shall see later, in Section 12.9, the passivity and the losslessness properties are crucial to the
design of discrete-time systems with very low sensitivity to changes in the filter coefficients.

2.4.3 Impulse and Step Responses

The response of a digital filter to a unit sample sequence {3[n]} is called the unit sample response, or simply,
the impulse response, and is denoted as {k[r]}. Correspondingly, the response of a discrete-time system to
a unit step sequence {u[n]}, denoted as {s[n}}, is its unit step response, or simply, the step response.. As
we show in Section 2.5, a linear time-invariant digital filter is completely characterized in the time-domain
by its impulse response or its step response.

EXAMPLE 2.21 Determinanon of the Impulse Response

: wnh an mput-output relanon :'_3 T s

Cons1dcr an LTI dnscrete—nme' ’

7 y[n} = a;x[n] + azx[n e 1} + a3x[n = 2] & a4x[n _; ,:, . :
s impulse .“Se {”["H s obtamed by settmg r[n] = S[n], resultmg i

h{n] T al‘s[”] + “Z‘SE" = 1] '*‘ 0135[11 = 2] + 045[71 = 3].15---‘ TR

The 1mpulse, res) onse 1s thus a ﬁmte length ’sequcnce of length 4 glven by G 7,

2.5 Time Domain characterization of LTI Discrete-Time Systems
2.5.1 input output relationship ex 2.24,25, 26,27, 28

2.5.2 tabular method of convolution sum computation ex 2.29, 30
2.5.3 stability condition in terms of the impulse response ex 31,32,33
2.5.4 causality condition in terms of the impulse response

2.5 Time-Domain Characterization of LTI Discrete-Time
Systems

A linear time-invariant (LTI) discrete-time system satisfies both the linearity and the time-invariance
properties. Such systems are mathematically easy to analyze and characterize and, as a consequence, €as)
to design. In addition, highly useful signal processing algorithms have been developed utilizing this clast
of systems over the last several decades. In this text, we consider almost entirely this type of discrete-time
system.

In most cases, an LTI discrete-time system is designed as an interconnection of simple subsystems
Each subsystem, in turn, is implemented with the aid of the basic building blocks discussed earlier in Sec-
tion 2.1.2. In order to be able to analyze such systems in the time domain, we need to develop the pertinen
relationships between the input and the output of an LTI discrete-time system and the characterization of
the interconnected system. We first show that the output sequence of a linear, time-invariant discrete-time
system is given by the convolution sum of its impulse response sequence with the input sequence. We ther
outline a simple tabular method to compute the convolution sum of two finite-length sequences. From the
convolution sum description of a linear, time-invariant discrete-time system, we next develop the stability
condition and the causality condition in terms of its uhpulse response.

2.5.1 Input-Output Relationship

A consequence of the linear, time-invariance property is that an LTI discrete-time system is completely
characterized by its impulse response; that is, knowing the impulse response, we can compute the output
of the system to any arbitrary input. We develop this relationship now.

Let h[n] denote the impulse response of the LTI discrete-time system of interest, that is, the response
to an input 8[n]. We first compute the response of this filter to the input x[»] of Eg. (2.52). Since the
discrete-time system is time-invariant, its response to d[n — 1] is h[n — 1]. Likewise, the responses tc
8[n +2), 8[n — 4], and 8[n — 6] are, respectively, h[n + 2], A[n — 4], and h[n — 6]. Because of linearty,
the response of the LTI discrete-time system to the input

x[n)=0.55[n + 2] + 1.58[n — 1] = &[n — 2] + 8[n — 4] +0.754[n — 6]
will be simply
yln] = 0.5k(n + 2] + 1.5h[n — 1] = hln = 21 + hn — 4]+ 0.75h[n - 6].

It follows from the above result that an arbitrary input sequence x[n] can be expressed as a weighted
inear combination of delayed and advanced unit sample sequences in the form

o0

xin)=) x[koln - k], Q1)

==00

where the weight x[k] on the right-hand side denotes specifically the kth sample value of the sequence
(x[n]}. The response of the LTI discrete-time system to the sequence x(k][n — k] is x[k]h[n — k]. Asa

result, the response y[n] of the discrete-time system to x[n] is given by

xJ
yin)=) xlklh(n— k]
k=-00
which can be alternately written as
>
ynl=) xln— k(K]
k=—00

(2.73a)

(2.73b)

by 4 simple change of variables. The above sum in Eqs. (2.73a) and (2.73b) is called the yonvolution sum

of the sequences x[n] and a{n| and represented compactly as

yln] = x[n}®hln],

where the notation (3) denotes the convolution sum.”

(2.74)

e

.
H
i
E
¥
L
B
S

k] 7 hln—k] ~ vIk] 2 Ly

x{k]

Figure 2.29: Schematic representation of the convolution sum operation.

The convolution sum operation satifis severa useful properties. First, the operation is commutative;
that s,

n @] = xk@ul). 273)
Second, the convolution operation,for stable and singl-sided sequences, is associafive; ha s,
(@ xlr) @l = 1@ (@ xin)) 276)

and last,the operation is distributve; that I,

1)@ ln] + 5[] = x(m@ln] + 1@ xln] (21)

Proof of these properties is left as exercises (Problems 2.34 t0 2.36),

The convolution sum operetion of Eq. (2.73¢) cam be inerpetedas fllows. W frst time-tvers the
sequence h{K], amving a [~k We hen shit [~K] to the right by sampling periodsin > 0, ortothe
eft by n sampling periods i n < 0, to form the sequence h[n — k. Next, we form the product sequence
o[k] = x[KJh{n = K] Summing al samples of [then yieldsthe nth semple of y{n] of the convolution
sum, The process of generating vk is lustraed in Figure 2.25 This process s implemented for each
value of n inthe Fange 0 < 1 < c0. The reresentron of te aernate form of the convolution sum

oneration iven by B, (2730 is obtened by interchanging the sequences x{K] and h[A] n Figure 2.3

It is clear from the above discussion that the impulse response {h{n]) completely characterizes an
LTI discrete-time system in the time domain because, knowing the impulse response, We can compute,
in principle, the output sequence y[n] for any given input sequence x[n] using the convolution sum of
Eq, (2.73a) or (2.73b). The computation of an output sample is simply 2 sum of products involving fairly
simple arithmetic operations such as additions, multiplications, and delays. However, in practice, the
convolution sum can be employed to compute the output sample at any instant only if either the impulse
response sequence and/or the input sequence is of finite length, resulting in a finite sum of products. Note
that if both the input and the impulse response sequences are of finite length, the output sequence is also of
finite length. In the case of a discrete-time system with an infinite-length impulse response, it is obviously
not possible to compute the output using the convolution sum if the input is also of infinite length. We
shall therefore consider alternative time-domain descriptions of such systems that involve only finite sums

of products.

O—O0—C
3 -2 -1

(a)

x[klh[—k]

. 0 %
-5-4-3 2 -1 I 1 2 3 4
-2

@D (e

x[kJR[1-K]

o—o0—0—
-4 -3 -2

x[kIAl2-k]
1

- o—o—o—k
~-3-2 -1 0 1 2 3 4 5 6

(h)

Figure 2.30: Hlustration of the convolution process.

y[n}

Q
4-
T
2, ¢ ¢ ?
g
< a0 .
¢
4t .)) . . -
0 1 2 3 4 5 6

Time index n

Figure 2.32: Sequence generated by convolution using MATLAB.

f

% Program 2_6
% lllustration of Convolution

%

a = input('Type in the first sequence =");

b = input("Type in the second sequence =");
c = conv(a, b);

o0

M = length(c)-1;

n=0:1:M;

disp(‘output sequence =');disp(c)
stem(n,c)

xlabel('Time index n'); ylabel('Amplitude’);

> ylnl=) xln - klhlk]

k-=1—'¢'0

Type in the first sequence =[-2 0 1 -1 3]

Type in the second sequence =12 0 -1]

output sequence =

Type%20in%20the%20first%20sequence%20=%20%5b-2%200%201%20-1%203%5d%0d%0aType%20in%20the%20second%20sequence%20=%20%5b1%202%200%20-1%5d%0d%0aoutput%20sequence%20=%0d%0a%20%20%20%20-2%20%20%20%20-4%20%20%20%20%201%20%20%20%20%203%20%20%20%20%201%20%20%20%20%205%20%20%20%20%201%20%20%20%20-3
Type%20in%20the%20first%20sequence%20=%20%5b-2%200%201%20-1%203%5d%0d%0aType%20in%20the%20second%20sequence%20=%20%5b1%202%200%20-1%5d%0d%0aoutput%20sequence%20=%0d%0a%20%20%20%20-2%20%20%20%20-4%20%20%20%20%201%20%20%20%20%203%20%20%20%20%201%20%20%20%20%205%20%20%20%20%201%20%20%20%20-3
Type%20in%20the%20first%20sequence%20=%20%5b-2%200%201%20-1%203%5d%0d%0aType%20in%20the%20second%20sequence%20=%20%5b1%202%200%20-1%5d%0d%0aoutput%20sequence%20=%0d%0a%20%20%20%20-2%20%20%20%20-4%20%20%20%20%201%20%20%20%20%203%20%20%20%20%201%20%20%20%20%205%20%20%20%20%201%20%20%20%20-3

2.5.2 Tabular Method of Convolution Sum Computation

The calculation of the convolution sum of two finite-length sequences can be carried out simply either
by using a tabular method similar to that used in conventional multiplication of two numbers [Pie96] or
using a method based on the multiplication of two polynomials. These two method are simpler to carry out
and easy to remember than the graphical method outlined in Section 2.5.1. We illustrate the first method
in this section. The polynomial multiplication method of computing the convolution sum is described in
Section 6.6.

Without any loss of generality we consider the evaluation of the convolution of the sequence {g[n]},
0 < n < 3, with the sequence {h[n]}, 0 < n < 2 generating the sequence

yln) = gnl®hn], 0<n <,

The samples of these two sequences are then multiplied using the conventional multiplication method
but without any carry operations on the columns. First, each sample of (g[n]} is multiplied with A[0]

LIVELa

and the samples of the product sequence are placed in a row beginning at time index n = 0. Next, each

sample of {g[n]) is multiplied with h([1] and the samples of the product sequence are placed in a second

row beginning at time index n = 1. Finally, each sample of {g[n]} is multiplied with £(2] and the samples

gﬁ the product sequence are placed in a third row beginning at time index n = 2. The process is indicated
low,

" 0 l 2 3 4 5
glnl: gl0] gll] gl2] g(3]
h(n]: A[O] h(1] (2] -
g[0JAR[0] gl[11A[0] g[2]R[0] g[31A[0]
g[0JA[1] gl1]A[l] g[2]A[1] gl3]A[1]
gl01A[2] gl1]A[2] gl2]Al2] (3]Al2]
y[n] = y[0] y[1] y[2] ¥[3] y[4] y[5]

It should be noted that each line in the above table corresponds to a delayed, weighted impulse response.
The samples of the sequence {y[n]} generated by the convolution sum are obtained by adding the three
entries in the column above each sample and are given by

¥10} = g[0JR[0],

y[1] = g[11A[0] + g[O1A[1],
ad y[2] = g[21h[0] + g{1]h[1] + g[O]A[2],
ylnl=)" gln — klh(k]
it y[3] = g[31A[0] + g[21A[1] + g[11A{2],

y{4] = g(31Al1] + gf2]Al2],
y[51 = g[31RI2]). N

.EXAMPLE 2.29 Convolunon of Two One-Sided Sequences Usmg the Tabular Method

We develop the convolutlon sum of the two sequences {x [n]} and {h[n]} of Example 2 Uang the above method-.i-
The process is 1Ilustrated below St n bt S S SHRTENG

()
=

whichis'scen to be ideatical o that decivelin Brample 226, 10 b

The tabular method can also be employed to evaluate the convolution sum of two finite-length two-

sided sequences [Pie96]. In this case, a decimal point is first placed to the right of the sample with the time
‘ndex 7 = 0. Next, the convolution is computed ignoring the locations of the decimal point. Finally, the

decimal point s inserted according to the rules of conventional multiplication The sample immediately

to the left of the decimal point is then located at the time index n = 0.

EXAMPLE 230 Convolution of Two-Sided Sequences IUsing the Tabular Method =

We determine the convolutlon sum y[n] of the two sequences

'»-»--{8["11 = {3 — L {h[nn—{4 ja em el

The COHVOh.lthI] sum of the above two sequences are next eva]uated usmg the tabular method as shown below' '
where the samples at tlme index n = 0 are 1ndncated by the sohd cxrcles placed unmedxately to thelr nght

TEEEE R Y

e e e

Hence, wehave -~ -~ -

Lbise s e g

2.5.3 Stahility Condition in Terms of the Impulse Response

Recall from Section 2.4.2 that a discrete-time system is defined to be stable, or precisely, bounded-input,
bounded-output (BIBO) stable, if the output sequance { y{n]} of the system remains bounded for all bounded
mput sequences {x[n]}. We now develop the stability condition for an LTI discrete-time system. We show
that un LTI digital filter is BIBO stable if and only if its impulse response sequence {k[n]} is absolutely
summable, that 1,

S= Z Ih[n]| < 0. (2.78)

N===0C

We prove the above statement for a real impulse response {2[n]}. The extension of the proof for a complex
impulse response sequence is left as an exercise (Problem 2.74). Now, if the input sequence {x[n]] is
hounded. that is. [x[#]] < B < oo, then the output amplitude at time instant n, from Eq. (2.73b), 18

54 oo
slnli=] Y kK —k)| <) (ALY xln = K]
k=-oc f==x
<Be Y Ihfk)l = B,S < oo, (279)
k=—0C

Thus. S < oo implies [y[n]| < By < o, indicating that the sequence {y[n]} is also bounded. To
prove the converse, assume that the sequence {v[n}} is bounded, that is, |y[n]f = B,. Now, consider the

EXAMpLE 2.31 Stablllty Condnion of a Causal Fxrst-Order LTI Dlscrete—Tnme System x
Consuder a causal LTI dxscrete~txme system thh an 1mpuIse response gwen by St
« . ; o h][n] ot”,u[n] |
Fortis Sym . Cane G

5= Z ia ulnli

) ; ﬁ;_' A n~-oo

Sen L Zlal" for lwl <1 5
= 1-I| | ;_ .
Therufore,S < ooxf |a| < lforwhxch the above system is BIBO stable Onthe otherhand 1f lal > 1 themﬁmte
series }: Ia |” does not converge, and as aresult the above causal system 1s notBIBO stable (N

2.5.4 Causality Condition in Terms of the Impulse Response

hkl=0 fork <0, (289)

As aresult, an LTI discrete-time system is causal if and only if its impulse response sequence (A[n]} is a
causal sequence satisfying the condition of Eq, (2.85).

2.6 Simple Interconnection Schemes

Two widely_used schemes for developing complex LTI discrete-time systems from simple LTI discrete-time
system sections are described next.

b A

hs[n} b = —»| hyln] hyln] > = — h[n]®@hy(n] >

kA

— hyln]

Figure 2.33: The cascade connection.

2.6.1 Cascade Connection

Figure 2.33 shows the cascade connection of two LTI discrete-time systems in which the output of one
system is connected to the input of the second system. The overall impulse response 2[n] of the cascade of
the two systems with impulse responses A [n] and hy[n], respectively, is given by their linear convolution,
that s,

hin] = hi[n]@haln]. (2.86)

Hence, the cascaded system is equivalent to a system with an impulse response h1[n]() ha[n]. If there are
more than two LTI systems, the impulse response of the overall cascade is given by the linear convolution
of the impulse responses of the individual systems. In general, the ordering of the filters in the cascade
has no effect on the overall impulse response because of the commutative property of convolution.

[t can be shown that the cascade connection of stable systems is stable. Likewise, the cascade connection

of passtve (lossless) systems is passive (lossless).
An application of the cascade connection scheme is in the development of an inverse sysiem. If the

two LTI systems in the cascade connection of Figure 2.33 are such that

hi [n@ha(n] = d[n]. (2.87)

then the LTI system ho{n] is said to be thelnversedf the LTI system A [n], and vice versa. As a result of
the above relation, if the input to the cascaded system is x[r], its output is also x[n]. An application of this
concept is in the recovery of a signal from its distorted version appearing at the output of a ransmission
channel. This is accomplished by designing an inverse system if the impulse response of the channel is
Known.

-EXAMPLE 2 34 Imrerse ufa DIS{:I'EH: Time Accumulatur = SRR araunE D

'_.{....«....= H

'me Exampla 2 22 the unpulseresponse nf thedlscrete-t: me ax:;_:_umuiamrls the umt step Saquence pn{n} Therefnre, :

fmm Eq (?. 8?], Ihe. mverse systarn must SEHSf}{ thc cﬂndltmu e

ﬂ[ﬂl@hﬂu] = 3[H]

A R

It f““““’”f”mﬁq f233J T 'r[n] =0 fﬂr’n 4-:: 0 and

ﬁg{{i] = 1 Ekgtel_""'",

: As a result,

:Thus, the 1mpuls¢ rcspnnse uf ﬂl*.« m‘we:rse system 15 gwen b;.r
: . | hg{ﬂ}
' whlch is cai]e:d a backward d{ﬁerence Sysrgm L .';:_- S

wins

ﬁ[n} ~—_5[n — 11

96.2 Parallel Connection

The connection scheme of Figure 2,34 is called the parallel connection, and here the outputs of the two
LTI discrete-time systems are added to form the new output while the same input is fed to both systems,
The impulse response of the overall system is thus given by

{

hin] = hy[n] + ho[n]. (2.89)

Likewise, if more than two LTI discrete-time systems are in parallel, the impulse response of the overall
system 1s given by the sum of the impulse responses of the individual systems.

[t 15 a simple exercise to show that the parallel connection of stable systems is stable. However, the
parallel connection of passive (lossless) systems may or may not be passive (lossless).

— h l[ﬂ.]

—
sl hyln] ?

Figure 2.34: The parallel connection.

h[n]=h1[n]+h2[n]*h3[n]+h2[n]*h4[n]
—1——4- hl[n} —I(-P—D

See example 2.35
hg[”]

Il
!

hl[ﬂ‘.] + hz[ﬂl — e

h3[n] 4’@

h 4[”]

Figure 2.35: The discrete-time system of Example 2.35.

Hybrid: cascade and parallel connections of several systems

T 23S

?—'W\ = SEV\3 -~ -—é—%[\/\—\f_&
o= sl - LgTn O\
\"\.'5 = ya %val

{f\%= -2 (‘-&{’S/\/-’t EV\}

Hﬂe ®\Ievq\\ IE
WDn)l = hy 4 b @ g+ @ e

h,®hy = s00l - L spand
hed by =L st ned) @ 2 O A G

T CGIAD) 4 -] = ST
EW) = GTo) e s 581 L 5] sl

Common Impulse Responses

EQUATION 7-1
The delta function 1s the identityv for

convolution. Any signal convolved with
a delta function 1s left unchanged.

EQUATION 7-2

A system that amplifies or attenuates has
a scaled delta function for an impulse
response. In this equation, & determines
the amplification or attenuation.

EQUATION 7-3

A relative shift between the input and
output signals corresponds to an impulse
response that 1s a shafted delta function.
The variable, 5, determines the amount of
shift 1n this equation.

x[n]*d[n] = x[n]

x[n] * k6[n] = kx[n]

x[n]*0[n+s] = x[n+s]

