EENG 479 : Digital Signal Processing (DSP)

Lecture #5:

2.7 Finite Dimensional LTI Discrete Time Systems

Prof. Mohab A. Mangoud

Professor of Wireless Communications (Networks, IoT and AI)
University of Bahrain, College of Engineering
Department of Electrical and Electronics Engineering
P.O.Box 32038- Kingdom of Bahrain
mmangoud@uob.edu.bh
http://mangoud.com



mailto:mmangoud@uob.edu.bh

2.7 Finite-Dimensional LTI Discrete-Time Systems

An important subclass of LTI discrete-time systems is characterized by a linear constant coefficient differ-
ence equation of the form

Z diyln — k] = Z prxln ~ k], (2.90)
k=0 k=0
where x[n] and y[»n] are, respectively, the input and the output of the system, and {dy } and { px } are constants.
The order of the discrete-time system is given by max(N, M), which is the order of the difference equation
characterizing the system. If is possible to implement an LTI system characterized by Eq. (2.90) since
the computation here involves two finite sums of products even though such a system, in general, has an
impulse response of infinite length.

The output y[rn] can then be computed recursively from Eq. (2.90). 1f we assume the system to be
causal, then we can rewrite Eq. (2.90) to express y[n] explicitly as a function of x[n]:

N
y[n] = — Z -y[n — k] + Z Jc[n — k], (2.91)

k=1

provided dy # 0. The output y[n] can be computed for all n > n,, knowing x{n] and the initial conditions

y[nﬂ' - l}a }’[”o _2}3 -*-:y[nﬂ - N]'
A simple finite-dimensional LTI system is considered in Example 2.36.
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2.7.1 Total Solution Calculation

The procedure for computing the solution of the constant coefficient difference equation of Eq. (2.90) is
very similar to that employed in solving the constant coefficient differential equation in the case of an LTI
continuous-time system. In the case of the discrete-time system of Eq. (2.90), the output response y{n] also
consists of two components that are computed independently and then added to yield the total solution:

ylnl = yelnl + yplnl. (2.97)

[n Eq. 12.97), the component vy [#] is the solution of Eq. (2.90) with the input x[n] = 0; that 1s, it is the
solution of the homogeneous difference equation:

N
> diyln — k1 =0, (2.98)
k=0

und the component y,[n] is a solution of Eq. (2.90) with x[n] # 0. y.[n] is called the complementary
solution or homogeneous solution, while y,[n]1s called the particular solution, resulting from the specified
iput x{n|, otten called the forcing function. The sum of the complementary and the particular solutions
as given by Eq. (2.97) is called the rotal solution.

We first describe the method of computing the complementary solution y.[n]. To this end, we assume
that i1t 15 ot the form

yeln] = A" (2.99)

Substituting the above in Eq. (2.98), we arrive at

N N
Y diyln =kl =) diank
k=0 k=0

=N (doa" + VTt dyd +dy) = 0. (2.100)




The polynomial ZL\:() d 2Nk is called the characteristic polynomial of.the discrete-time system of
Eq.i2.90). Let Ay, A2, ..., Ay denote its IV roots. If these roots are all distinct, then the general form of
the complementary solution is given by

ye[n] = A + aahy + - +anhy, (2.101)

where a), @2, ..., oy are constants determined from the specified initial conditions of the discrete-time
system. The complementary solution takes a different form in the case of multiple roots. For example, 1f
5.1 is of multiplicity L and the remaining N = L roots, A2, A3, ... AN-.L, are distinct, then Eq. (2.101)
takes the form

Yeln) = a A + apnd + a3n2}.'f +oant T Ay e Fanky (2.102)

Nexl. we consider the determination of the particular solution y,[n] of the difference equation of
Eq. (2.90). Here the procedure is to assume that the particular solution is also of the same form as the
specified input x(n] if x[n] has the form A (Ao # i, 0 = 1, 2...., N)foralln. Thus, if x[n]1s a constant,
then v, (i) is also assumed to be constant. Likewise, if x[n] is a sinusoidal sequence, then yp[n] is also
assumed to be a sinusoidal sequence, and 50 on.

We illustrate the determination of the total solution in Example 2.37.



EXAMPLE 2.37 Total Solution Computation of an L.11 Sysiem Ior a Lonstant input

Let us cetermine the total solunon for n = O of a discrete-time qystem charactenzed by thc follow"mg dlfference
equation:

SRl ol = A =6yl =2l m =l |- Lt o 2103)

for a step input x[n] = 8u[n] and with mitial conditions y[—1] =1 and y[-;—-2} — o

- We first determine the form of the comp’ementary solution. Setting x[n] = O and y[n) = )L" in Bq (2.103)
we arrive at

A" LAl ean2 = n2G2 43— 6)
= x"-2(x A 3)(}. 2) = 0

and hence the roots of the characteristic polynomial A2 A — -6 are 51 ——;- 2% JLg =2, Thercfore the c,ompl’ementar)} !
solution |s of the form ' s SSHTRY. ~

: velnl -'cq( 3 +a2(2)". 3P ._:.‘__-(2-7104)
For ll'he particular solution, |we assume 2 TR BRI S %t

Typnl = B.

Substituting the above in Eq. (2.103), we get

which forn = 0 yicldslﬁ = -2

The total solution 1§ therefore of the form

6+ f — 68 = Bulnl.

Il = ap(=3) £ ar =2, e O s s B o (2.105)

The constant oy and a2 are chosen to sat'isfy the specified initial conditions. ]=r0m Eqs. (2 103) and (2 105), we
get ' = : ' :

M2 =N+ 2 2= Sy
Yi-1l=a ()7 2@ —2=1
Solv1n0 these two equanons, we arnve at . iy

Thus, the total soluuon xs ngen by




XAMPLE 2. 38 : Totai Solutnon Compntation of an LTI System for an Exponentlal Input

We determine the tota.l solutxon for n > 0 of the dJrference equanon of Eq (2 103) for a.n mpllt x[n] --_ .,’,‘: ¢ [h] -
with the same initial conditions as in Example 2. 37. PR :
As indicated in anmple 2.37, the c,ompk,menhry so] ution contams a term o:2 (”)" whvch is of the same torm :
as the specified:input. Hence, we need to select a form for the partxcular solution that 33 dastmct and does not3
contain any terms sumlar to those contamed in the complementary solunon We assume A 3

)p["] —:3’1(2)'r e
Qubsututmg the above in Eq (2 103) We get ‘

ﬂn(”)" - ﬁ(n - 1)(2)"“.4 6ﬁ(n - 2)(2)" (2)".ce[n]

Forn = 0, we obtaxn from the above equatlon p = 0.4, The total soluuon 1s now of the form

»[n]*-al( 3) 1o )o) +04n(2)"“' -n\() | (2 107)

To determine the values of ) and az, we make use of the specnﬁed mxual condmons From Eqs (2 103) :md
(2.107), we arnve at AT .,ﬁ s : . : :

2= a2 + @) +04(—2)<2)‘2 1 o
Pfe ~H + @ 704(-1)(2)—1 i

which when solvcd yleld B @ Therefore the total solutxon 1s glven by

yInI = 3. ()4( 3

— 0.96(2)" +04nm" n\'O



279 Zero-Input Response and Zero-State Response

An aliernate appeoach to determining the total solution y(n] of the difference equation of Eg. (2.90) 1
by computing its zero-input response, Jyiln} and zero-state response, yy;[n]. The component Yoiln] 18
obtained by solving Eq. (290) by setting the juput x[n] = 0, hnd the component yyg[n} 1 obtained by
solving Eq. (2.90) by applying the specified input wit Tl conditions set o zero] The total solutior
s then given by yi[n] 4 Vil

This approach is illustrated in Example 2.3%




and the zemstate response

y[n] + y[n = 1] = Oy 2] = x[n]

The zero-input response, [yy;fn]. of Eq. (2. 1ﬂ3] 15 gl"ffﬂb’f the: mnrplcnﬁentﬁj’ 3?Iflﬁﬂﬂ; 0f 2 { ), where-
the constants ¢ and ¢z are Ch{}Sﬂn to sdmfj.r the qpemﬁed mmal cnmntmns. \Iow" ) Eq- 7{2 1!]3 et

The zermstate res ns&
Imro initial conditions. rom Eq [2 103] wa’-gei

Next, frﬂm Eq (2 105} and the ah-we set uf e:quatmns-
response forn > - 0 wrth mltlal mndltlf_f_:'s }ngL 2} = o




|2.7.3 Impulse Response Calculation

The impulse response h{n] of a causal LT] discrete-time system is the output observed with input x[n] =
5[n]. Thus, it is simply the zero-state response with x[r] = 8[n]. Now for such an input, x[n] = 0 for
J_u_LQ,_aud_lmmh_ELarticular solution is zero, that is, y,[n] = 0| Hence, the impulse responsc can be
computed from the complementary solution of Eq, (2.101) in the case of simple roots of the characrerisic |
equation by determining the constants o; to satisfy the zero initia conditions | A Simitar procedure canm
be followed in the case of multiple roots of the characterisfic equation. A system with all zero initial

conditions is often called a relaxed system.
We illustrate the impulse response computation in Examples 2.40 and 241.




EXAMPLE 240  Impulse Response Lomputation from Zem State Response

In this example, we determine the impulse rcsponsc hin] of thc caus.al dlscrete hmc system of Example 2 37 From
Eq. (2.104), we get R

— | el = (- -y +€t2(2)” Cnzh

From the above, we arrive at

h[()] a1+012,_ h[l]“"-30!1+2a2 S
Next, from Eq. (2.103) with x{n] = §(n], we get il }*[n]-l-}r{n*l]—ﬁ}-[# "21_“1'[”]'
I[O}:', [1]+h[0} 200 e

Solution of the above two sets of 2quations yields oy = 0 6 and ag = 0 4 | '_
Thus, the impulse response 1S gwen by - R e S

hn] = 06(- )+04(2) ol shi S B




EXAMPLE 2.41 Impulse Response Computanon from Total Sotutlon

i
(53 e #d

A causal LTI discrete-time system wu‘.h an unpulsc msponsc h[n] satxsﬁes the. follomng d1fferencc equanon

h[n]——ah{n—i]-é‘[n] : ; (2108)

We determine « closed-form expression for i[n}, and the mput—output relation of t.hc above systern
The total solution of the difference equation of Eq. (2. 108) is gwcn by i T

h[n] = hc[n] +hp[n] : (2 109)

where h¢[n] and hp[n] are, respectwely the comple mentary and the pamcu]ar solunons To detcrmmc the com-
plementary solution, we set the nght-hand mdc of Eq (2 108) equal to zero and set h[n] = A" rcsultmg m

AR —-ak" 1—0

The nontrivial soluuon of the above equanon is A ==-a and hence h,;[n} e a Por the parucular solunon, wei
assume hpln] = B. Substxtutmg the cxpress:ons for hc[n] and h p{n] m Eq (2 109) we get :

L hmwa PR cwo)
From Egs. (2.108) and (2. 110) we then have - = : R T e s R e
:h[(}}—-l——l-{»—ﬁ x'_-_.__"

implying B = 0. Hence, the total soluuon of thc dlffercncc cquatum of Eq (2 108) 18 ngen by
4 gt g e L e e
h[n {0 . n<0 el _   s ( 111)‘
It should be noted that the above rcsult could also have been obtamed by mductmn by evaluaung Eq (2 108) for
n =0,1,2, ..., and then solving for h[O] h[l] h{2], and so on. (Pmblcm 2. 44). g
To determme the general input—output relation of the above dlscretc—nmc system, we convo}vc both sndes of
Eg. (2.108) with x[»] and make use oqu (2.74) 1o arnve at ' S {: X



[t follows from the form of the complementary solution given by Eq. (2.102) that the impulse response
of 4 finite-dimensional LTI system characterized by a difference equation of the form of Eq. (2.90) 1s of

infinite length. However, as illustrated in Example 2.42, there exist LTI discrete-time Systeris With an
infinite impulse response that cannot be characterized by the difference equation form of Eq. (2.90).

EXAMPLE2.42 A Causal Stable LTI Discrete-Time System with No Difference Equation;geptesentat_it}n
The system defined by the impulse reSpome ) _,

o e a hin] =“§#["—1]

does not have a representation in the form of a linear constant coefficient difference equation.. It should be noted -
that the above system is causal and also BIBO stable.'f‘""' ffcus ey R vy e st S T i e R
Since the impulse response h[n] of a causal discrete-time system is a causal sequence, Eq. (2.91) can
also be used to calculate recursively the impulse response for n > 0 by setting initial conditions to zero
values. that is, by setting y[=1] = y[-2) = -+ = y[-~N] = 0, and using a unit sample sequence d[n] as

the input x[n]. The step response of a causal LTI system can similarly be computed recursively by settng
sero initial conditions and applying a unit step sequence as the input. It should be noted that the causal
discrete-time system of Eq. (2.91) 1s linear only for zero initial conditions (Problem 2.67).



2.7.4 Output Computation Using MATLAB

The causal LTI system of the form of Eq. (2.91) can be simulated in MATLAB using the function filter
already made use of in Program 2 4. The function implements Eq. (2.91) in the form of a set of equations

as indicated below:

N

d M
y[n] = %x[ﬂ] +s1[n = 1], y[n] = - Z a’fy[n — k] + ,;0 s_gx[n -k,

k=1

sin] = %x[n] - %y[n] + s2[n — 1],

(2.113)

PN-1 dn-1

x[n] - y[n) + sy-2ln — 11,

sn—-1[n]=

PN dn
syin] = =-x[n] — ——ylnl,
nin] % & y
where s;[n], 1 <i < N, are N internal variables. By back substitution, it can be shown that the above set
of equations indeed reduces to Eq. (2.91). The values of the internal variables 5;[n] at the starting instant

are called the initial conditions.
The basic forms of the function £ilter are as follows: '

Yy = filter(p,d,x)
[y, sf] = filter(p,d;x, si]

In the first form, the input data vector X is processed by the system characterized by the coefficient vectors
p and d to generate the output vector y, assuming zero initial conditions. The length of y is the same as the
length of x. The second form permits the inclusion of nonzero initial conditions of the internal variables
s;[n] in the vector si and provides an output that includes the vector sf as the final values of s;[n]. Since
the function implements Eq. (2.91), the coefficient dy must be nonzero.

Example 2.43 illustrates the use of the function filter in the computation of the total solution.




2.7.5 Impulse and Step Response Computation Using MATLAB

The impulse and step responses of a causal LTI discrete-time system can be computed using the MATLAB
M-hles impz and stepz, respectively. Each function is available with several options. We illustrate the
use of these two functions in Example 2.44.

EXAMPLE 2.4 Impulse and Step Responae Computanons Usmg MATLAB

Dctermme the hrst 41 9amplcs of the unpulse and rcsponse samples of the causal LTI ¢ systcm dcﬁncd by

y[n]+07y[n—-l] 045)[11 2] 06y[rz-3] . S Gafra
' --*08x[n} O44x[n——1]+036xn 2]+002x[n 3] (2]14)

The code fragments that can be used to compute thc unpuls&and step rcsponsc samplcs are’ as followc  - - s 35 -
‘p= 0.8 044036002] | e ‘
d=[107 =045 06]

[h,m] = impz(p,d,41);
[s,m] =, stepz(p d 41}

The compund first 41 samples of the 1mpulse and stcp response samples arc mdxcatcd in Fxgurcs 2 36(3) and ( )
respectively. e AR . o S L T .



Amplitude

0.5 . —- -
0 10 20 30
Time index n Time index n
(a) (b)

Figure 2.36: (a) Impulse response and (b) step response of the system of Eq. (2.114).



HW#2

due date next lecture, submitted as a hard copy

Q1. Determine the total solution for a discrete time system
characterized by the following LCCDE:

y[n]=5/6 y[n-1]-1/6 y[n-2] +X[n] + 72 x[n-1]

For a step input x[n]=2"n, n=0
initial conditions x[-1]=1, y[-1]=6 and y[-2]=6

Q2. verify and plot the results of the code of examples 2.43 and 2.44



EXAMPLE 2.37 Total Solution Computation of an L.11 Sysiem Ior a Lonstant input

Let us determine the total solunon for n
equation:

= 0 of a discrete-time qystem charactenzed by thc followmg dlfference

SRl ol = A =6yl =2l m =l |- Lt o 2103)

for a step input x[n] = 8u[n] and with mitial conditions y[—1] =1 and y[-;—-2} — o

- We first determine the form of the comp-ementary solution. Setting x[n] — O and y[n) = )L" in Bq (2.103)

we arrive at

R % Lol

and hence the roots of the characteristic polynomial A2 A — -6 are 51 .—;. 2% JLg =2 Thercfore the c,ompl’ementar)} !

solution s of the form

_ean—2 — an—2(32 + A6)

= x"-2(x A 3)(}. 2) = 0

vl[n! —'C([( 3) -1—-(17(_1.) ’

For ll'he particular solution, |[we assume

Substituting the above in Eq. (2.103), we

which forn = 0 yicldslﬁ = -2

et =8

get

6+ f — 68 = Bulnl.

The total solution 1§ therefore of the form

o (2.104)

yinl = ay(—3)* + a2 ()" = 2,

RO e S E 2105)

The constant oy and a2 are chosen to sat'isfy the specified initial conditions. ]=r0m Eqs. (2 103) and (2 105), we

get

§> y[—2]

yi—1]

=a1(=3)"% +2(2) 2

— o —H 7 4@

Solvm‘r these two equanons, we arnve ) e

L e

Thus, the total soluuon xs ngen by




XAMPLE 2. 38 : Totai Solutnon Compntation of an LTI System for an Exponentlal Input

We determine the tota.l solutxon for n > 0 of the dJrference equanon of Eq (2 103) for a.n mpllt x[n] --_ .,’,‘: ¢ [h] -
with the same initial conditions as in Example 2. 37. PR :
As indicated in anmple 2.37, the c,ompk,menhry so] ution contams a term o:2 (”)" whvch is of the same torm :
as the specified:input. Hence, we need to select a form for the partxcular solution that 33 dastmct and does not3
contain any terms sumlar to those contamed in the complementary solunon We assume A 3

)p["] —:3’1(2)'r e
Qubsututmg the above in Eq (2 103) We get ‘

ﬂn(”)" - ﬁ(n - 1)(2)"“.4 6ﬁ(n - 2)(2)" (2)".ce[n]

Forn = 0, we obtaxn from the above equatlon p = 0.4, The total soluuon 1s now of the form

»[n]*-al( 3) 1o )o) +04n(2)"“' -n\() | (2 107)

To determine the values of ) and az, we make use of the specnﬁed mxual condmons From Eqs (2 103) :md
(2.107), we arnve at AT .,ﬁ s : . : :

2= a2 + @) +04(—2)<2)‘2 1 o
Pfe ~H + @ 704(-1)(2)—1 i

which when solvcd yleld B @ Therefore the total solutxon 1s glven by

yInI = 3. ()4( 3

— 0.96(2)" +04nm" n\'O



Q1. Determine the total solution for a discrete time system characterized by the following
LCCDE: Mn]=5/6y[n-1]-1/6[n—-2]+x{n]+1/2x{n-1]
For a stepinput x{n]=2"»n=0 and imitial conditions x[-1]=L y[-1]=06and y[-2]=06

First, determine the form of the complementary solufion. Setting x[n]=x[n-1]=0 and
y[n]=A4". Then we arrive at
A" —SA" T+ AT = A6 054+ D)= A" @A 1(2A-1) =0

Hence the roots of the characteristic polynomual 64°-054+1 ared =1/3, 4, =1/2.

Therefore, the complementary solution is of the form

v [n]=eq(1/3)" +ay(1/2)

For the parficular solution, we assume
v, [n]= 852"
Substituting the equation in the problem, we get
682" —582 £ g2 = 6(2" +%1""'}

Which for n21 wvields §=2.

The total solution is therefore of the form

Mal=ay(1/3)" +ay(1/2)" + 22"

The constant o, |, are chosen to satisfy the modified specified initial conditions.

301 = 2511~ %.1'[—2] + {0+ %x{—l] MI=23(0) —%y[—l} oIl + %x[ﬂ]
_eglegig le 2.0 1 s 1 B
i} i} 2 2 6 2 0 2 12

Solving these two equations, we arrive at

Thus, the total solution 15 given by

1 11.1 o
Va]l=-2=1"+—{="+2""  nz=0
v#] (3} 2{2}'

Joo Hong Lee
solution pdf file



279 Zero-Input Response and Zero-State Response

An aliernate appeoach to determining the total solution y(n] of the difference equation of Eg. (2.90) 1
by computing its zero-input response, Jyiln} and zero-state response, yy;[n]. The component Yoiln] 18
obtained by solving Eq. (290) by setting the juput x[n] = 0, hnd the component yyg[n} 1 obtained by
solving Eq. (2.90) by applying the specified input wit Tl conditions set o zero] The total solutior
s then given by yi[n] 4 Vil

This approach is illustrated in Example 2.3%




and the zemstate response

y[n] + y[n = 1] = Oy 2] = x[n]

The zero-input response, [yy;fn]. of Eq. (2. 1ﬂ3] 15 gl"ffﬂb’f the: mnrplcnﬁentﬁj’ 3?Iflﬁﬂﬂ; 0f 2 { ), where-
the constants ¢ and ¢z are Ch{}Sﬂn to sdmfj.r the qpemﬁed mmal cnmntmns. \Iow" ) Eq- 7{2 1!]3 et

The zermstate res ns&
Imro initial conditions. rom Eq [2 103] wa’-gei

Next, frﬂm Eq (2 105} and the ah-we set uf e:quatmns-
response forn > - 0 wrth mltlal mndltlf_f_:'s }ngL 2} = o




Total solution computation from zero input and zero state response

Home work example (from A.A.Beex lecture notes)



zero input response

5_"__[:] 'Ef -

Home work example (from A.A.Beex lecture notes)



zero state response

pbt:

Home work example (from A.A.Beex lecture notes)



|2.7.3 Impulse Response Calculation

The impulse response h{n] of a causal LT] discrete-time system is the output observed with input x[n] =
5[n]. Thus, it is simply the zero-state response with x[n] = 8[n]. Now for such an input, x[n] = 0 for
f_ﬁjmmth_ELanicular solution is zero, that is, y,[n] = 0| Hence, the impulse response can be
computed from the complementary solution of Eq. (2.101) in the case of simple roots of the Characterisic |
equation by determining the constants o; (0 satisfy the zero iniia condifions | A Similar procedure cam
be followed in the case of multiple roots of the characterisfic equation. A system with all zero initial

conditions is often called a relaxed system.
We illustrate the impulse response computation in Examples 2.40 and 241.




. lﬂ“n | <o 8o Home work example (from A.A.Beex lecture notes)




EXAMPLE 240  Impulse Response Lomputation from Zem State Response

In this example, we determine the impulse rcsponsc hin] of thc caus.al dlscrete hmc system of Example 2 37 From
Eq. (2.104), we get R

— | el = (- -y +€t2(2)” Cnzh

From the above, we arrive at

h[()] a1+012,_ h[l]“"-30!1+2a2 S
Next, from Eq. (2.103) with x{n] = §(n], we get il }*[n]-l-}r{n*l]—ﬁ}-[# "21_“1'[”]'
I[O}:', [1]+h[0} 200 e

Solution of the above two sets of 2quations yields oy = 0 6 and ag = 0 4 | '_
Thus, the impulse response 1S gwen by - R e S

hn] = 06(- )+04(2) ol shi S B




2.7.4 Output Computation Using MATLAB

The causal LTI system of the form of Eq. (2.91) can be simulated in MATLAB using the function filter
already made use of in Program 2 4. The function implements Eq. (2.91) in the form of a set of equations

as indicated below:

N

d M
y[n] = %x[ﬂ] +s1[n = 1], y[n] = - Z a’fy[n — k] + ,;0 s_gx[n -k,

k=1

sin] = %x[n] - %y[n] + s2[n — 1],

(2.113)

PN-1 dn-1

x[n] - y[n) + sy-2ln — 11,

sn—-1[n]=

PN dn
syin] = =-x[n] — ——ylnl,
nin] % & y
where s;[n], 1 <i < N, are N internal variables. By back substitution, it can be shown that the above set
of equations indeed reduces to Eq. (2.91). The values of the internal variables 5;[n] at the starting instant

are called the initial conditions.
The basic forms of the function £ilter are as follows: '

Yy = filter(p,d,x)
[y, sf] = filter(p,d;x, si]

In the first form, the input data vector X is processed by the system characterized by the coefficient vectors
p and d to generate the output vector y, assuming zero initial conditions. The length of y is the same as the
length of x. The second form permits the inclusion of nonzero initial conditions of the internal variables
s;[n] in the vector si and provides an output that includes the vector sf as the final values of s;[n]. Since
the function implements Eq. (2.91), the coefficient dy must be nonzero.

Example 2.43 illustrates the use of the function filter in the computation of the total solution.




[y1,sf]=filter(1,[1,1,-6],8*ones(1,8),[-7,6]);
stem(y1)

hold on;

n=0:7;

y2=-1.8*(-3).*n+4.8%(2)."n-2;
stem(y2,'r*")
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2000 |-

1000 [
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1




2.7.5 Impulse and Step Response Computation Using MATLAB

The impulse and step responses of a causal LTI discrete-time system can be computed using the MATLAB
M-hles impz and stepz, respectively. Each function is available with several options. We illustrate the
use of these two functions in Example 2.44.

EXAMPLE 2.44 Impulae and Step Response Computatlons Usmg MATLAB

Dctermmc thc hrst 41 qamplcs of the unpulse and rcsponse samples of the causal ITI system dcﬁncd by

[nl+07y[n—-l} 045)[):-—2] 06y[n—-3] b o
‘ -'_.v---08x[n} 044x[n—-1]+036x[n 2]+002x[n 3] (2114)'

' »'i":npuls&and sLep r::sponsc samplcs are'as followc  - - o 5- :.. -

= [0 8 -0, 44 o 36 0. 02] :_;: ;,Q '.;.; ..-: .1'_5"._-' :
d = {1 O 7 O 45 ~{)i 6] ; ? o ooooooooooooomoooooooooooo
{‘h’m] lmpZ ‘p d 41}: ) ‘, R .'.""1' of [o]9

The computed first 41 samp}es of the 1mpulse and step response sarnples arc: I

respectively. R e A R B

-0.5

1
45



2.7.6 Location of Roots of Characteristic Equation for BIBO Stability

It should be noted that the impulse response samples of a stable LTI system decay to zero values as the
time index n becomes very large. Likewise, the step response samples of a stable LTI system approach a
constant value as n becomes very large. From the plots of Figure 2.36(a) and (b), we can conclude that
most likely the LTI system of Eq. (2.114) is BIBO stable. However, it is impossible to check the stability
of a system just by examining only a finite segment of its impulse or step response as in these figures.
The BIBO stability of a causal LTI system characterized by a constant coefficient difference equation
of the form of Eq. (2.90) can be inferred from the values of the roots A; of its characteristic polynomial.
To establish the stability conditions, recall that the form of the impulse response is the same as that of the
complementary solution. From Eq. (2.101), assuming all the roots to be distinct, we have

N
hln] = > oA} ulnl. (2.115)
i=1
The constants «; in the above expression are determined to satisfy zero initial conditions. From Eq. (2.115)
we get
oo oo N N o)
dolrlnll =D D a@)™| = D leil D 1Al (2.116)
n=0 n=01i=1 i=1 n=0

It follows from the above equation that if jA;| < 1 for all values of i, then Zf—_o |A: 1" < oo, and as a result,
> 4 lAln]| < oo; that is, the impulse response is absolutely summable, implying BIBO stability of the
causal LTI discrete-time system. However, the impulse response sequence is not absolutely summable
if one or more oflthe roots A; has a magnitude greater thaw or equal to one| It should be noted that the
discrete-time system of Example 2.37 described in Eqg. (2.103) is clearly an unstable system as both roots
of the characteristic equation have magnitudes greater than one.

In the case of multiple roots of the characteristic equation, the impulse response will contain terms of
the form n¥ A. As aresult, the expression for > neo |A[n]| will contain the term

o0
> o ImXoan,
n=0

which converges if |A;| < 1 (Problem 2.89), and as a result, here also the impulse response is absolutely
summable.

Summarizing, a causal LTI system characterized by a linear constant coefficient difference equation of
the form of Eq. (2.90) is BIBO stable if the magnitude of each of the roots of its characteristic equation is
less than one. This condition is both necessary and sufficient.




2.8 Classification of LTI Discrete-Time Systems

Linear time-invariant (LTI) discrete-time systems are usually classified either according to the length of
their impulse response sequences or according to the method of calculation employed to determine the

output samples.

2.8.1 Classification Based on Impulse Response Length
If h[n] is of finite length, that is,

h[n]=0 for n < N; and n > N with N; < N, (2.117)

then it is known as afinite impulse response (FIR) discrete-time system, f<+ which the convolution sum

reduces O

Ao
y[n] = Z hlk]x[n — k]. (2.118)
k=N

Note that the above convolution sum, being a finite sum, can be used to calculate y{n] directly. The
basic operations involved are simply multiplication and addition. Note that the calculation of the present
value of the output sequence involves the value of the input sample at n = N and N — N previous
values of the input sequence along with the N2 — N1 + 1 impulse response samples describing the FIR
discrete-time system.

Examples of FIR discrete-time systems are the moving-average system of Eq. (2.61) and the linear
interpolators of Egs. (2.65) and (2.66).

If h[n] is of infinite length, then it is known as ar} infinite impulse response (1IR) discrete-time system.
For a causal IR discrete-time system with a causal mput x[7], the convolution sum can be expressed 1
the form

ylnl =3 x[klh[n — K],
k=0

which can be used to compute the output samples. However, for increasing n, the computational complexity
to compute the output sample increases as the number of products to be summed also increases.



Chapter (2) - Checklist

2.1 Discrete time signal

2.2 Typical sequences and sequence representation

2.3 The sampling Process

2.4 Discrete Time systems

2.5 Time Domain characterization of LTI Discrete-Time systems
2.6 Simple interconnection schemes

2.7 Finite-Dimensional LTI Discrete time systems~

2.8 classification of LTI Discrete time systems



Home work # (3)

« Reading section correlation of signals:
— Only 2.9.1 and 3, examples 2.46 and 2.47

» Solve proplems of chapter 2 page 107-115:
- #1,5,6,7(aandc), 8, 17, 25, 38, 50, 64,83,90

* Implement matlab exercise page 115:
- #9

Notes:
— Some final answers will be posted on the course web page

— Submit it as a hardcopy.
— Duedateis 07 Feb



