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Table 6.1: Commonly Used z-
Transform Pairs

Sequence z-Transform

3[n] 1 All values of z

1

1 -z |
|

l —az !

puln] 2] > 1

n

12| > |e]

o uln]

1 —(r cosa)o)z"l
1 — 2rcoswy)z=! 4+ r2z—2
(r sin a)(,)z'l
1 — 2rcoswy)z™—1 + riz—2

(r" cos won)u[n] Izl > r

(r" sin won) u[n] 1z] > r
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Inverse z-Transform

An alternative approach to the implementation of the
convolution sum is :

to form the product of the z-transforms of the individual
sequences being convolved and then evaluating the
inverse z-transform of the product.

In many applications this approach is more convenient
as it leads to a closed form answer

Thus how to compute inverse z transform

(1) Cauchy’s Residue Theorem
(2) Table Look Up Method

(3) Partial Fraction Method
(4)

Long Division



General Expression: Recall that, for z = re/®,

the z-transform G(z) given by

G(z)=>7_glnlz""=>r__ glnlr e /®”

1s merely the DTFT of the modified sequence
glnlr™

Accordingly, the inverse DTFT 1s thus given
by

gln]r " = 21 [T G(re’)e’"dom

By making a change of variablez =re e’

the previous equation can be converted 1nt0
a contour integral given by

gln]= l $G(2)z" ldz
2TCJ C’

where C' 1s a counterclockwise contour of
integration defined by |z| = 7



But the integral remains unchanged when
1s replaced with any contour C encircling
the point z = 0 1n the ROC of G(2)

The contour integral can be evaluated using
the Cauchv’s residue theorem resulting in

. ~ ¢ il |
Nzl residuesof G(z)z’
Bl Z:[at the poles inside C

The above equation needs to be evaluated at
all values of 7 and 1s not pursued here

As it is difficult to arrive to close form for it. Thus other methods are used
A rational z-transform G(z) with a causal
inverse transform g[»n] has an ROC that is
exterior to a circle

Here 1t 1s more convenient to express G(z)
1n a partial-fraction expansion form and
then determine g[#] by summing the inverse
transform of the individual simpler terms 1n
the expansion
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Inverse Transform by
Partial-Fraction Expansion

A rational G(z) can be expressed as

M il
G(z) = V it (C=g) A Zz ()pz
I z
i=0 l

e If M = N then G(z) can be re-expressed as

M-—N
Il il Pl
G(2)= 3 mz €+—1§§§
=0

where the degree of H(z)48 less than NV
 The rational functiow’F(z)/ D(z) 1s called a

proper fraction




« Example - Consider
2+08z7+0.527°+03z27

14087 L 4027
* By long division we arrive at |
5.5+2.12~

G =

G(z)=-3.5+1.5 z

O S0

/

Reminder

 The rational function F(z)/D(z) 1s called a
proper fraction



- Simple Poles: In most practical cases, the
rational z-transform of interest G(z) 1s a
proper fraction with simple poles

 Letthepolesot G(z)beatz=A,, 1<k N

« A partial-fraction expansion of G(z) is then
of the form
~ N P
. > -
(=1 1— 7\"62
e« The constants p, 1in the partial-fraction
expansion are called the residues and are
given by
Pe=QA—2Az")G(2)|,_,,

- Each term of the sum 1n partial-fraction
expansion has an ROC given by |z| > |A /]
and, thus has an 1inverse transform of the
form p,(A )" nln]

e Therefore, the inverse transform g[7] of
G(z) 1s given by

N
gln]= éZ_:lpe(Ke)nH[n]




- Example - et the z-transform /A(z) of a
causal sequence /Z[7n2] be given by

z(z+2) 1+2=""

A=) —

(z—02)(z+0.60)| [A—0.2z"Ha+o0.6z"H

= A partial-fraction expansion of /7(z) is then
of the form

P1 P2
H(z) = —+
1—02="1 140.6z"1

e Now
—1
p=(1=02z)H(z) =22 | Epg
i 1+0.6z i
A 0
and
—1
P, =(1+0.6z2DH)|._ .= 2 1 A
e e Clzied AL
= IHcemec
>.75 1.75

=) — — = —
1O 2 -G G =

e The 1nverse transform of the above i1s
thenclonc oiNvem ilon

A[rn]=2.75(0.2) u[n]—1.75(—0.6)" u[7]




Inverse Transform by
Partial-Fraction Expansion

- Multiple Poles: If G(z) has multiple poles,
the partial-fraction expansion i1s of slightly
different form

- Let the pole at z = v be of multiplicity Z. and
the remaining N — 7 poles be simple and at
z=2A,, 1=¢=<N—L

* Then the partial-fraction expansion of G(z)
1s of the form

M_N  _, N-L o, L v
G(z)= 2 nyz + X2 <+ 2 —
(=0 =1 1=-A,z " i=1(l-vz")
where the constants Y; are computed using
1 7 b

" a-v="Y 6]

. | | 1<i<L
» The residues p, are calculated as before

(LA



Inverse z-Transform via Long
Division
 The z-transform G(z) of a causal sequence _
{g[n]} can be expanded in a power series in z !
* In the series expansion, the coefficient
multiplying the term z™" is then the n-th
sample g[n]
e For a rational z-transform expressed as a
ratio of polynomials 1in z7L the pOWEr series
expansion can be obtained by long division

 Example - Consider
1+2z1
1+04z71-0.12z72
 Long division of the numerator by the
denominator yields
H(z)=1+1.6z"1-0.52z"24+0.4z">—-0.2224z"% +---.

e As aresult
L{Aln]}={1 1.6 —0.52 0.4 —0.2224 -}, n>0

H(z)=




e [r,p,k]l=residuez (num,den)

develops the partial-fraction expansion of
a rational z-transform with numerator and
denominator coefficients given by vectors
num and den

Vector r contains the residues
Vector p contains the poles
Vector k contains the constantsz,

[Nnum, den] =residuez (r, p, k)
converts a z-transform expressed 1n a
partial-fraction expansion form to its
rational form

The function imp=z can be used to find the
inverse of a rational z-transform G(z)

The function computes the coefficients of
the power series expansion of G(2)

iihe  mumben ol cocliliicientsicanicithenlbe
user specified or determined automatically




%Program 6_3

% Partial-Fraction Expansion of Rational z-Transform
%

num = input('Type in numerator coefficients =");

den = input('Type in denominator coefficients =");
[r,p,k] = residuez(num,den);

disp('Residues');disp(r')

disp('Poles');disp(p')

disp('Constants');disp(k)

% Program 6_4

% Partial-Fraction Expansion to Rational z-Transform
%

r = input("Type in the residues =");

p = input('Type in the poles =");

k = input('Type in the constants =");

[num, den] = residuez(r,p,k);

disp('Numerator polynomial coefficients'); disp(num)
disp('Denominator polynomial coefficients'); disp(den)




% Program 6_5

% Power Series Expansion of a Rational z-Transform

%

% Read in the number of inverse z-transform coefficients to be computed
L = input(‘Type in the length of output vector =");

% Read in the numerator and denominator coefficients of

% the z-transform

num = input('Type in the numerator coefficients ="');

den = input('Type in the denominator coefficients ="');

% Compute the desired number of inverse transform coefficients
[y,{] = impz(num,den,L);

disp('Coefficients of the power series expansion');

disp(y')




Table 6.2: z-Transform

Properties

Property Sequence z -Transform ROC

gln] G(2) Ry

hln) H(z) Ry
Conjugation g*[n] G*(z*%) Rg
Time-reversal gl[—n] G(l1/2) 1/Rg
Linearity agln] + Bhn] aG(z) + BH(2) Includes Ry NRy,
Time-shifting gln —nyl z " G(2) R g, except possibly

the point z = 0 or co

Multiplication by
an exponential a g[n] G(z/a) x| Rg
sequence
Differentiation nglnl . dG(z) R g, except possibly
of G(z2) dz the point z = O or co
Convolution glnl®h[n] G(z2)H (2) Includes R NRy,
Modulation glnlhln] zl—r fC G(v)H(z/v)v—l dv Includes R Ry,

Parseval’s relation z glnlh*[n] = 2?] $c GYH*(1/v*)v~ dv

n=—00

Note: If R, denotes the region R,- < Izl < R + and R} denotes the region R;,- < |z]| <
Rp+, then 1/R¢ denotes the reglon 1/Rg- Izl < 1/Rg- and RgRy denotes the region
R ~-Ry- < |z| < Rg+Rh+



LTI Discrete-Time Systems in
the Transform Domain

» An LTI discrete-time system 1s completely
characterized 1n the time-domain by its
impulse response sequence {A[n]}

Thus, the transform-domain representation
of a discrete-time signal can also be equally
applied to the transform-domain
representation of an LTI discrete-time
system
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LTI Discrete-Time Systems in
the Transform Domain

Such transform-domain representations
provide additional insight into the behavior
of such systems

It 1s easier to design and implement these
systems 1n the transform-domain for certain
applications

We consider now the use of the DTFT and

the z-transform in developing the transform-
domain representations of an LTI system
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Finite-Dimensional LTI
Discrete-Time Systems

In this course we shall be concerned with
LTI discrete-time systems characterized by
linear constant coefficient difference

equations of the form:

N M |
Y diyln—kl= ) ppxln—k]
k=0 k=0
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Finite-Dimensional LTI

Discrete-Time Systems

Applying the z-transform to both sides of
the difference equation and making use of
the linearity and the time-invariance

properties of Table 6.2 we arrive at

N M
dez_kY(z) = Zpkz_kX(z)
k=0 k=0
where Y(z) and X(z) denote the z-transforms
of y[n] and x[n] with associated ROC:s,
respectively
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Finite-Dimensional LTI
Discrete-Time Systems

* A more convenient form of the z-domain
representation of the difference equation 1s
given by

N M
[ dez_ij(z) :( Zpkz_k jX(Z)
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The Transfer Function

A generalization of the frequency response
function

The convolution sum description of an LTI
discrete-time system with an impulse
response /A2[»n] i1s given by

bzl — D> Alklx[nz — k1

Taking the z-transforms of both sides we get

SO

bt (- T e EATH B =D > hlklx[rn — k]j ANl

Fl—=—00 Fl2——COO k=—oo

e 7 e
= > ALkl > xl[n— k]z_nj

k=—oco \_77——00
= i h[k]( ix[é]z(€+k)j
— oo \_f——o0o
= O vy — i h[k][ ix[é]z_ejz_k
k:—CXD e o)
. )EEZ)
e Therefore, Y (z) = Zh[k]z_ij(z)
k——oco
(=)

« Thus, Y(z) = H((E=)X(=2)




e Consider an LTI discrete-time system
characterized by a difference equation

chvzo dryln—k]= ZﬁOpkx[n — k]

 Its transfer function is obtained by taking
the z-transform of both sides of the above

equation A7 I
DN

e Thus )=
Z;(v:odkz_k
 Or, equivalently as
M
(N—=M) Zkzo Pr=
N N—k
Zk:o djz

e An alternate form of the transfer function is
given by

M —k

H(z)=z




Or, equivalently as
H(z)= Do (V- Iz 5m

dO Hk I(Z j“k)
&y &,...,E, are the finite zeros, and

A» Aps..., Ay are the finite poles of H(z)

If N > M, there are additional (N — M) zeros
atz=20

If N < M, there are additional (M — N)poles

atz=20
For a causal IIR digital filter, the impulse

response 1s a causal sequence
The ROC of the causal transfer function

F(zy = Po ;-0 T 2 — €0
do Hk 1(Z A )

1s thus exterior to a circle going through the
pole furthest from the origin

Thus the ROC is given by |z| > max|A ]
i



« Example - Consider the M-point moving-
average FIR filter with an impulse response
W] = 1/M, O0<n<M-—1
[7]= O, otherwise

e Its transfer function 1s then given by

1 M1 1—z=M zM —1

2z =5, EOZ_H T M-z M[zM(z—1)]

e The transfer function has M zeros on the
unit circle at z=e/2™%/'M o<k < M —1

e There are A/ — 1 poles at z = 0 and a single
pole atz =1 M=8

1F

e The poleatz=1
exactly cancels the
zero atz = 1

0.5F

O - L TEEEEEN .

Imaginary Part

e The ROC 1s the entire e -
z-plane exceptz =0 e

Real Part




- Example - A causal LTI IIR digital filter 1s
described by a constant coefficient
difference equation given by

el =il = L= 1l Zodliz — 2] ==oe i~ 23] | == 1l 2wl a=—1l]
—1.04 y|n—2]+0.222 y[n —3]

e Its transfer function i1s therefore given by
a bl 2 2l 2
1—1.3z1+1.04z"2 —-0.222=z"3

Alternate forms:

H(z)=

V'l C=0 | —

z2 —12z+1
z3-1.322+1.04z —0.222
il (Zz=00+ J0E)(z=0.0= &)
(z=03)(z=0.5+ j0.7)(z—0.5— j0.7)

* Note: Poles farthest from ;| N
z=0 have a magnitude £ ]
m T x

° ROC i ’ Z‘ - \/ 074 F 0.5 RU(I)Pm 0.5 |




13

Frequency Response from

Transfer Function

e If the ROC of the transfer function /(=)
includes the unit circle, then the frequency
response  (e/®)of the LTI digital filter can
be obtained simply as follows:

H(e/®) = H(D|.__ o

- For a real coefficient transfer function /(=)
1t can be shown that

H (e/)|” = H(e/®)H * (/)
= H(e/°)YH (e /)= H(z)H (z! )’

=z :e\j(!)

oYy it eSSyt

VITtr v

For a stable rational transter function 1n the
f01111

SR SYy e
dO Hiv:l(z i ﬂvk)

the factored form of the frequency response
1S given by

AT -
H(ejo)) i @ej(x)(N—M) Hk:l (ej(x) T ak)

do MR @ =2n)




e It 1s convenient to visualize the contributions
of the zero factor (z — &;)and the pole factor
zt=v/s )iiceomilitinc iactorcd iomatofitine
frequency response

« The magnitude function is given by

‘H(@JQ))‘ — & e‘].c‘)(N—M)‘ Hﬁl‘ejw o ék‘
o H;cvzl 0= 7%‘
which reduces to —
F1eroy = |PoTlizite”” ~ B
do H;cv:l e 7\/«‘

» The phase response for a rational transfer
function 1s of the form

arg H (e/®) =arg(py/dy) + o(N — M)

M . N .
o Marc(c s &) WMais(e L)
= =1




Frequency Response from
Transfer Function

* The magnitude-squared function of a real-
coefficient transfer function can be
computed using

H(ef‘“‘))l2 =

Po

2T (e —gp)(e o —gp)

dy

[Timi ¢/ = hi)e /2 =)
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Geometric Interpretation of
Frequency Response Computation

e The factored form of the frequency

TPQﬂﬁﬂ SC

@
Ei(el®) — L0 o jo M) IT,2, (7 —E0)
do Hk =
1s convenient to develop a geometric
interpretation of the frequency response

computation from the pole-zero plot as ®
varies from O to 27t on the unit circle

« The geometric interpretation can be used to
obtain a sketch of the response as a function
of the frequency

e A typical factor in the factored form of the
frequency response 1s given by

(e/® —pe/®)

where pe’/? is a zero if it is zero factor or is

a pole 1f 1t 1s a pole factor




* As shown below 1n the z-plane the factor
(e/® — pe/?) represents a vector starting at
the point z = pe/? and ending on the unit
circle at z =eJ®

K_

e
« As o 1s varied from O to 2, the tip of the
vector moves counterclockise from the
point z = 1 tracing the unit circle and back
to the pointz =1



e As indicated by

‘H(ejc‘))‘ — f)’?g

H]]:[:'l‘ej@ — ék‘

H;cvzl e/ — 7‘k|

the magnitude response [H(e’")| at a
specific value of w 1s given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of

all pole vectors
- Likewise. from

arg H (e/®) =arg(po/dp) + (N — M)
+ 3 arg(e’” — &) — X arg(e’” — Ap)

we observe that the phase response

at a specific value of ® 1s obtained by
adding the phase of the term pgy/dy and the
linear-phase term (/N — A) to the sum of
the angles of the zero vectors minus the
angles of the pole vectors



e Thus, an approximate plot of the magnitude
and phase responses of the transfer function
of an LTI digital filter can be developed by
examining the pole and zero locations

* Now, a zero (pole) vector has the smallest

magnitude when o = ¢
e To highly attenuate signal components 1n a
SPeenhicdiciccyanancivclncedtioimldce
zeros very close to or on the unit circle 1n
this range

e Likewise, to highly emphasize signal
components 1n a specified frequency range,
we need to place poles very close to or on
the unit circle 1n this range




Stability Condition in Terms of
the Pole Locations

e A causal LTI digital filter 1s BIBO stable if
and only 1f 1its impulse response A2[7] 1s
absolutely summable, 1.e.,

|7 S = i‘h[n]‘<oo

Jli=——00

 We now develop a stability condition 1n
terms of the pole locations of the transfer
function H(z)

e The ROC of the z-transform H(z) of the
impulse response sequence /A[n] 1s defined
by values of |z] = » for which A[n]r " is
absolutely summable

e Thus, 1f the ROC includes the unit circle |Z]
= 1, then the digital filter is stable, and vice
versa



e In addition, for a stable and causal digital
filter for which /4[n] 1s a right-sided
sequence, the ROC will include the unit
circle and entire z-plane including the point
Zl=Foo

 An FIR digital filter with bounded impulse
response 1s always stable

 On the other hand, an IIR filter may be
unstable 1f not designed properly

e In addition, an originally stable IIR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
implementation




function
1
1-1.8452"1 +0.8505862 2

H(z)=

» Example - Consider the causal IIR transfer
 The plot of the impulse response coetficients

/]

1s shown on the next slide
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e As can be seen from the above plot, the
immpulse response coefficient A[n] decays

rapidly to zero value as n increases

©)
o W



* The absolute summability condition of A[#]
1s satisfied

« Hence, H(z) 1s a stable transfer function

 Now, consider the case when the transfer

function coefficients are rounded to values

with 2 digits after the decimal point:
1

[ (35 035

e A plot of the impulse response of 2[1/1] 1S
shown below

H(z)=

VAN
ZARzA
"Q_xl T 00 OO0 S OOGaC000G

o)
(W ]
2

N

Amplitude
V]
\wa—a
—\J—.—’-\. -
—
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* In this case, the impulse response coetticient
h[n] increases rapidly to a constant value as
n 1ncreases

* Hence, the absolute summability condition of
1s violated

e Thus, H(z)1s an unstable transfer function

 The stability testing of a 1IR transfer
function 1s therefore an important problem

 In most cases it 1s difficult to compute the
ifinite sum

S = Z;O:_oo‘h[n]‘ < o0
e For a causal IIR transfer function, the sum S
can be computed approximately as

Sk =>. 5 |nln]



e The partial sum 1s computed for increasing
values of K until the difference between a
series of consecutive values of Sp 1s
smaller than some arbitrarily chosen small
number, which is typically 107°

e For a transfer function of very high order
this approach may not be satisfactory

e An alternate, easy-to-test, stability condition
1s developed next



* Consider the causal IIR digital filter with a

rational transfer functlon H(z) ogiven by
el
Zk od kZ

 Its impulse response {4[n]} 1s a right-sided
sequence

 The ROC of H(z) 1s exterior to a circle
going through the pole furthest from z =0



 But stability requires that {4[n]} be
absolutely summable

» This in turn implies that the DTFT H (e/®)
of {h[n]} exists

* Now, 1f the ROC of the z-transtform H(z)
includes the unit circle, then

H(e/®)=H(z)

Z:ej(o



 Conclusion: All poles of a causal stable
transfer function H(z) must be strictly inside
the unit circle

* The stability region (shown shaded) in the
z-plane 1s shown below

7 bl

/5{ stability region
i Jl Rez
unit circle = e




Stability Condition in Terms of
the Pole Locations

» Example - The factored form of

]
H(z) =
(2) 1-0.8452"110.8505862 2

I
H(2) = 09021 (120.9432T)
which has a real pole at z= 0.902 and a real
pole at z=0.943

* Since both poles are iside the unit circle,
H(z) 1s BIBO stable

40 _
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Stability Condition in Terms of
the Pole Locations

» Example - The factored form of
1

1-1.85z7140.85272
I
(1-z71)(1-0.85z71)
which has a real pole on the unit circle at z
= 1 and the other pole inside the unit circle

H(z)=

[/‘\](Z)Z

Since both poles are not inside the unit
circle, H(z) 1s unstable
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