EENG 479 : Digital Signal Processing (DSP)

Lecture \#8: Chapter 6 : Inverse Z Transform

Prof. Mohab A. Mangoud
Professor of Wireless Communications (Networks, IoT and AI)
University of Bahrain, College of Engineering
Department of Electrical and Electronics Engineering
P.O.Box 32038- Kingdom of Bahrain
mmangoud@uob.edu.bh
http://mangoud.com

Table 6.1: Commonly Used zTransform Pairs

Sequence
z-Transform
ROC

All values of z

$$
|z|>1
$$

$$
|z|>|\alpha|
$$

$$
\begin{array}{lll}
\left(r^{n} \cos \omega_{o} n\right) \mu[n] & \frac{1-\left(r \cos \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}} & |z|>r \\
\left(r^{n} \sin \omega_{o} n\right) \mu[n] & \frac{\left(r \sin \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}} & |z|>r
\end{array}
$$

Inverse z-Transform

An alternative approach to the implementation of the convolution sum is :
to form the product of the z-transforms of the individual sequences being convolved and then evaluating the inverse z-transform of the product.

In many applications this approach is more convenient as it leads to a closed form answer

Thus how to compute inverse z transform
(1) Cauchy's Residue Theorem
(2) Table Look Up Method
(3) Partial Fraction Method
(4) Long Division

General Expression: Recall that, for $z=r e^{j \omega}$, the z-transform $G(z)$ given by
$G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}$
is merely the DTFT of the modified sequence $g[n] r^{-n}$
Accordingly, the inverse DTFT is thus given by

$$
g[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega
$$

By making a change of variable $z=r e^{j \omega}$, the previous equation can be converted into a contour integral given by

$$
g[n]=\frac{1}{2 \pi j} \oint_{C^{\prime}} G(z) z^{n-1} d z
$$

where C^{\prime} is a counterclockwise contour of integration defined by $|z|=r$

But the integral remains unchanged when is replaced with any contour C encircling the point $z=0$ in the ROC of $G(z)$
The contour integral can be evaluated using the Cauchy's residue theorem resulting in

$$
g[n]=\sum\left[\begin{array}{l}
\text { residues of } G(z) z^{n-1} \\
\text { at the poles inside } C
\end{array}\right]
$$

The above equation needs to be evaluated at all values of n and is not pursued here
As it is difficult to arrive to close form for it. Thus other methods are used A rational z-transform $G(z)$ with a causal inverse transform $g[n]$ has an ROC that is exterior to a circle
Here it is more convenient to express $G(z)$ in a partial-fraction expansion form and then determine $g[n]$ by summing the inverse transform of the individual simpler terms in the expansion
(B) Look up tables and recognition

$$
\begin{aligned}
& X(z)=e^{a / z},|z|>0 \\
&= \sum_{k=0}^{\infty}\left(\frac{a}{z}\right)^{k} / k!\Rightarrow x_{n}=\frac{a^{n}}{n!} u_{n} \\
& X(z)=\log \left(1-a z^{-1}\right)=-\sum_{n=1}^{\infty} \frac{a^{n}}{n} z^{-n},|z|>|a| \\
& \Downarrow \\
& x_{n}=\frac{-a^{n}}{n} u_{n-1}
\end{aligned}
$$

Inverse Transform by Partial-Fraction Expansion

- A rational $G(z)$ can be expressed as

$$
G(z)=\frac{P(z)}{D(z)}=\frac{\sum_{i=0}^{M} p_{i} z^{-i}}{\sum_{i=0}^{N} d_{i} z^{-i}}
$$

- If $M \geq N$ then $G(z)$ can be re-expressed as

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\frac{P_{1}(z)}{D(z)}
$$

where the degree of $P_{1}(z)$ is less than N

- The rational function $P_{1}(z) / D(z)$ is called a proper fraction
- Example - Consider

$$
G(z)=\frac{2+0.8 z^{-1}+0.5 z^{-2}+0.3 z^{-3}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

- By long division we arrive at

$$
G(z)=\frac{-3.5+1.5 z^{-1}}{}+\frac{5.5+2.1 z^{-1}}{1+0.8 z^{-1}+0.2 z^{-2}}
$$

- The rational function $P_{1}(z) / D(z)$ is called a proper fraction
- Simple Poles: In most practical cases, the rational z-transform of interest $G(z)$ is a proper fraction with simple poles
- Let the poles of $G(z)$ be at $z=\lambda_{k}, 1 \leq k \leq N$
- A partial-fraction expansion of $G(z)$ is then of the form

$$
G(z)=\sum_{\ell=1}^{N}\left(\frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}\right)
$$

- The constants ρ_{ℓ} in the partial-fraction expansion are called the residues and are given by

$$
\mathrm{\rho}_{\ell}=\left.\left(1-\lambda_{\ell} z^{-1}\right) G(z)\right|_{z=\lambda_{\ell}}
$$

- Each term of the sum in partial-fraction expansion has an ROC given by $|z|>\left|\lambda_{\ell}\right|$ and, thus has an inverse transform of the form $\rho_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]$
- Therefore, the inverse transform $g[n]$ of $G(z)$ is given by

$$
g[n]=\sum_{\ell=1}^{N} \mathrm{P}_{\ell}\left(\lambda_{\ell}\right)^{n} \mu[n]
$$

- Example - Let the z-transform $H(z)$ of a causal sequence $h[n]$ be given by

$$
H(z)=\frac{z(z+2)}{(z-0.2)(z+0.6)}=\frac{1+2 z^{-1}}{\left(1-0.2 z^{-1}\right)\left(1+0.6 z^{-1}\right)}
$$

- A partial-fraction expansion of $H(z)$ is then of the form

$$
H(z)=\frac{\rho_{1}}{1-0.2 z^{-1}}+\frac{\rho_{2}}{1+0.6 z^{-1}}
$$

- Now

$$
\rho_{1}=\left.\left(1-0.2 z^{-1}\right) H(z)\right|_{z=0.2}=\left.\frac{1+2 z^{-1}}{1+0.6 z^{-1}}\right|_{z=0.2}=2.75
$$

and

$$
\rho_{2}=\left.\left(1+0.6 z^{-1}\right) H(z)\right|_{z=-0.6}=\left.\frac{1+2 z^{-1}}{1-0.2 z^{-1}}\right|_{z=-0.6}=-1.75
$$

- Hence

$$
H(z)=\frac{2.75}{1-0.2 z^{-1}}-\frac{1.75}{1+0.6 z^{-1}}
$$

- The inverse transform of the above is therefore given by

$$
h[n]=2.75(0.2)^{n} \mu[n]-1.75(-0.6)^{n} \mu[n]
$$

Inverse Tiransform by Partiall-Fraction Expansion

- Multiple Poles: If $G(z)$ has multiple poles, the partial-fraction expansion is of slightly different form
- Let the pole at $z=v$ be of multiplicity L and the remaining $N-L$ poles be simple and at $z=\lambda_{\ell}, 1 \leq \ell \leq N-L$
- Then the partial-fraction expansion of $G(z)$ is of the form

$$
G(z)=\sum_{\ell=0}^{M-N} \eta_{\ell} z^{-\ell}+\sum_{\ell=1}^{N-L} \frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}+\sum_{i=1}^{L} \frac{\gamma_{i}}{\left(1-v z^{-1}\right)^{i}}
$$

where the constants γ_{i} are computed using

$$
\gamma_{i}=\frac{1}{(L-i)!(-v)^{L-i}} \frac{d^{L-i}}{d\left(z^{-1}\right)^{L-i}}\left[\left(1-v z^{-1}\right)^{L} G(z)\right]_{z=v},
$$

$$
1 \leq i \leq L
$$

- The residues ρ_{ℓ} are calculated as before

Inverse z-Transform via Long Division

- The z-transform $G(z)$ of a causal sequence $\{g[n]\}$ can be expanded in a power series in z^{-1}
- In the series expansion, the coefficient multiplying the term z^{-n} is then the n-th sample $g[n]$
- For a rational z-transform expressed as a ratio of polynomials in z^{-1}, the power series expansion can be obtained by long division
- Example - Consider

$$
H(z)=\frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}}
$$

- Long division of the numerator by the denominator yields
$H(z)=1+1.6 z^{-1}-0.52 z^{-2}+0.4 z^{-3}-0.2224 z^{-4}+\cdots$.
- As a result
$\{h[n]\}=\left\{\begin{array}{llllll}1 & 1.6 & -0.52 & 0.4 & -0.2224 & \cdots .\end{array}\right\}, \quad n \geq 0$
- [r, p,k]=residuez(num,den) develops the partial-fraction expansion of a rational z-transform with numerator and denominator coefficients given by vectors num and den
- Vector r contains the residues
- Vector p contains the poles
- Vector k contains the constants η_{ℓ}
- [num, den] =residuez (r, p,k) converts a z-transform expressed in a partial-fraction expansion form to its rational form
- The function impz can be used to find the inverse of a rational z-transform $G(z)$
- The function computes the coefficients of the power series expansion of $G(z)$
- The number of coefficients can either be user specified or determined automatically

```
%Program 6_3
% Partial-Fraction Expansion of Rational z-Transform
%
num = input('Type in numerator coefficients = ');
den = input('Type in denominator coefficients = ');
[r,p,k] = residuez(num,den);
disp('Residues');disp(r')
disp('Poles');disp(p')
disp('Constants');disp(k)
```

```
% Program 6_4
% Partial-Fraction Expansion to Rational z-Transform
%
r = input('Type in the residues = ');
p = input('Type in the poles = ');
k = input('Type in the constants = ');
[num, den] = residuez(r,p,k);
disp('Numerator polynomial coefficients'); disp(num)
disp('Denominator polynomial coefficients'); disp(den)
```

```
% Program 6_5
% Power Series Expansion of a Rational z-Transform
%
% Read in the number of inverse z-transform coefficients to be computed
L = input('Type in the length of output vector = ');
% Read in the numerator and denominator coefficients of
% the z-transform
num = input('Type in the numerator coefficients = ');
den = input('Type in the denominator coefficients = ');
% Compute the desired number of inverse transform coefficients
[y,t] = impz(num,den,L);
disp('Coefficients of the power series expansion');
disp(y')
```


Table 6.2: z-Transform Properties

Property	Sequence	z-Transform	ROC
	$\begin{aligned} & g[n] \\ & h[n] \end{aligned}$	$\begin{aligned} & G(z) \\ & H(z) \end{aligned}$	$\begin{aligned} & \mathcal{R}_{g} \\ & \mathcal{R}_{h} \end{aligned}$
Conjugation	$g^{*}[n]$	$G^{*}\left(z^{*}\right)$	\mathcal{R}_{g}
Time-reversal	$g[-n]$	$G(1 / z)$	$1 / \mathcal{R}_{g}$
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G(z)+\beta H(z)$	Includes $\mathcal{R}_{\boldsymbol{g}} \cap \mathcal{R}_{\boldsymbol{h}}$
Time-shifting	$g\left[n-n_{o}\right]$	$z^{-n_{o}} G(z)$	\mathcal{R}_{g}, except possibly the point $z=0$ or ∞
Multiplication by an exponential sequence	$\alpha^{n} g[n]$	$G(z / \alpha)$	$\|\alpha\| \mathcal{R}_{g}$
Differentiation of $G(z)$	$n g[n]$	$-z \frac{d G(z)}{d z}$	\mathcal{R}_{g}, except possibly the point $z=0$ or ∞
Convolution	$g[n] * h[n]$	$G(z) H(z)$	Includes $\mathcal{R}_{g} \cap \mathcal{R}_{h}$
Modulation	$g[n] h[n]$	$\frac{1}{2 \pi j} \oint_{C} G(v) H(z / v) v^{-1} d v$	Includes $\mathcal{R}_{\boldsymbol{g}} \mathcal{R}_{\boldsymbol{h}}$
Parseval's relation		$\sum_{n=-\infty}^{\infty} g[n] h^{*}[n]=\frac{1}{2 \pi j} \oint_{C}$	v) $H^{*}\left(1 / v^{*}\right) v^{-1} d v$
Note: If \mathcal{R}_{g} denotes the region $R_{g^{-}}<\|z\|<R_{g^{+}}$and \mathcal{R}_{h} denotes the region $R_{h^{-}}<\|z\|<$ $R_{h^{+}}$, then $1 / \mathcal{R}_{g}$ denotes the region $1 / R_{g^{+}}<\|z\|<1 / R_{g^{-}}$and $\mathcal{R}_{g} \mathcal{R}_{h}$ denotes the region $R_{g^{-}} R_{h^{-}}<\|z\|<R_{g^{+}} R_{h^{+}}$.			

LTI Discrete-Time Systems in the Transform Domain

- An LTI discrete-time system is completely characterized in the time-domain by its impulse response sequence $\{h[n]\}$
- Thus, the transform-domain representation of a discrete-time signal can also be equally applied to the transform-domain representation of an LTI discrete-time system

LTI Discrete-Time Systems in the Transform Domain

- Such transform-domain representations provide additional insight into the behavior of such systems
- It is easier to design and implement these systems in the transform-domain for certain applications
- We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

Finite-Dimensional LTI Discrete-Time Systems

- In this course we shall be concerned with LTI discrete-time systems characterized by linear constant coefficient difference equations of the form:

$$
\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k]
$$

Finite-Dimensional LTI Discrete-Time Systems

- Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties of Table 6.2 we arrive at

$$
\sum_{k=0}^{N} d_{k} z^{-k} Y(z)=\sum_{k=0}^{M} p_{k} z^{-k} X(z)
$$

where $Y(z)$ and $X(z)$ denote the z-transforms of $y[n]$ and $x[n]$ with associated ROCs, respectively

Finite-Dimensional LTI Discrete-Time Systems

- A more convenient form of the z-domain representation of the difference equation is given by

$$
\left(\sum_{k=0}^{N} d_{k} z^{-k}\right) Y(z)=\left(\sum_{k=0}^{M} p_{k} z^{-k}\right) X(z)
$$

The Transfer Function

- A generalization of the frequency response function
- The convolution sum description of an LTI discrete-time system with an impulse response $h[n]$ is given by

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

- Taking the z-transforms of both sides we get

$$
\begin{aligned}
& Y(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} h[k] x[n-k]\right) z^{-n} \\
& =\sum_{k=-\infty}^{\infty} h[k]\left(\sum_{n=-\infty}^{\infty} x[n-k] z^{-n}\right) \\
& =\sum_{k=-\infty}^{\infty} h[k]\left(\sum_{\ell=-\infty}^{\infty} x[\ell] z^{-(\ell+k)}\right) \\
& \text { - Or, } Y(z)=\sum_{k=-\infty}^{\infty} h[k]\left(\sum_{e=-\infty}^{\infty} x[e] z^{-e}\right) z^{-k} \\
& \text { - Therefore, } Y(z)=(\underbrace{\infty}_{k=-\infty} h[k] z^{-k}) X(z) \\
& \text { - Thus, }
\end{aligned}
$$

- Consider an LTI discrete-time system characterized by a difference equation

$$
\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k]
$$

- Its transfer function is obtained by taking the z-transform of both sides of the above equation
- Thus

$$
H(z)=\frac{\sum_{k=0}^{M} p_{k} z^{-k}}{\sum_{k=0}^{N} d_{k} z^{-k}}
$$

- Or, equivalently as

$$
H(z)=z^{(N-M)} \frac{\sum_{k=0}^{M} p_{k} z^{M-k}}{\sum_{k=0}^{N} d_{k} z^{N-k}}
$$

- An alternate form of the transfer function is given by

$$
H(z)=\frac{p_{0}}{d_{0}} \cdot \frac{\prod_{k=1}^{M}\left(1-\xi_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-\lambda_{k} z^{-1}\right)}
$$

- Or, equivalently as

$$
H(z)=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

- $\xi_{1}, \xi_{2}, \ldots, \xi_{M}$ are the finite zeros, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ are the finite poles of $H(z)$
- If $N>M$, there are additional $(N-M)$ zeros at $z=0$
- If $N<M$, there are additional $(M-N)$ poles at $z=0$
- For a causal IIR digital filter, the impulse response is a causal sequence
- The ROC of the causal transfer function

$$
H(z)=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

is thus exterior to a circle going through the pole furthest from the origin

- Thus the ROC is given by $|z|>\max _{k}\left|\lambda_{k}\right|$
- Example - Consider the M-point movingaverage FIR filter with an impulse response

$$
h[n]=\left\{\begin{array}{cc}
1 / M, & 0 \leq n \leq M-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Its transfer function is then given by

$$
H(z)=\frac{1}{M} \sum_{n=0}^{M-1} z^{-n}=\frac{1-z^{-M}}{M\left(1-z^{-1}\right)}=\frac{z^{M}-1}{M\left[z^{M}(z-1)\right]}
$$

The transfer function has M zeros on the unit circle at $z=e^{j 2 \pi k / M}, 0 \leq k \leq M-1$

- There are $M-1$ poles at $z=0$ and a single pole at $z=1$
- The pole at $z=1$ exactly cancels the zero at $\mathrm{z}=1$
- The ROC is the entire z-plane except $z=0$

- Example - A causal LTI IIR digital filter is described by a constant coefficient difference equation given by
$y[n]=x[n-1]-1.2 x[n-2]+x[n-3]+1.3 y[n-1]$

$$
-1.04 y[n-2]+0.222 y[n-3]
$$

- Its transfer function is therefore given by

$$
H(z)=\frac{z^{-1}-1.2 z^{-2}+z^{-3}}{1-1.3 z^{-1}+1.04 z^{-2}-0.222 z^{-3}}
$$

Alternate forms:

$$
\begin{aligned}
& H(z)=\frac{z^{2}-1.2 z+1}{z^{3}-1.3 z^{2}+1.04 z-0.222} \\
= & \frac{(z-0.6+j 0.8)(z-0.6-j 0.8)}{(z-0.3)(z-0.5+j 0.7)(z-0.5-j 0.7)}
\end{aligned}
$$

- Note: Poles farthest from $z=0$ have a magnitude $\sqrt{0.74}$
- ROC: $|z|>\sqrt{0.74}$

Frequency Response from Transfer Function

- If the ROC of the transfer function $H(z)$ includes the unit circle, then the frequency response $H\left(e^{j \omega}\right)$ of the LTI digital filter can be obtained simply as follows:

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}
$$

- For a real coefficient transfer function $H(z)$ it can be shown that

$$
\begin{aligned}
\left|H\left(e^{j \omega}\right)\right|^{2} & =H\left(e^{j \omega}\right) H H^{*}\left(e^{j \omega}\right) \\
& =H\left(e^{j \omega}\right) H\left(e^{-j \omega}\right)=\left.H(z) H\left(z^{-1}\right)\right|_{z=e^{j \omega}}
\end{aligned}
$$

- For a stable rational transfer function in the form

$$
H(z)=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

the factored form of the frequency response is given by

$$
H\left(e^{j \omega}\right)=\frac{p_{0}}{d_{0}} e^{j \omega(N-M)} \frac{\prod_{k=1}^{M}\left(e^{j \omega}-\xi_{k}\right)}{\prod_{k=1}^{N}\left(e^{j \omega}-\lambda_{k}\right)}
$$

- It is convenient to visualize the contributions of the zero factor $\left(z-\xi_{k}\right)$ and the pole factor ($z-\lambda_{k}$) from the factored form of the frequency response
- The magnitude function is given by

$$
\left|H\left(e^{j \omega}\right)\right|=\left|\frac{p_{0}}{d_{0}}\right| e^{j \omega(N-M)} \left\lvert\, \frac{\prod_{k=1}^{M}\left|e^{j \omega}-\xi_{k}\right|}{\prod_{k=1}^{N}\left|e^{j \omega}-\lambda_{k}\right|}\right.
$$

which reduces to

$$
\left|H\left(e^{j \omega}\right)\right|=\left|\frac{p_{0}}{d_{0}}\right| \frac{\prod_{k=1}^{M}\left|e^{j \omega}-\xi_{k}\right|}{\prod_{k=1}^{N}\left|e^{j \omega}-\lambda_{k}\right|}
$$

- The phase response for a rational transfer function is of the form

$$
\begin{aligned}
& \arg H\left(e^{j \omega}\right)=\arg \left(p_{0} / d_{0}\right)+\omega(N-M) \\
& \quad+\sum_{k=1}^{M} \arg \left(e^{j \omega}-\xi_{k}\right)-\sum_{k=1}^{N} \arg \left(e^{j \omega}-\lambda_{k}\right)
\end{aligned}
$$

Frequency Response from Transfer Function

- The magnitude-squared function of a realcoefficient transfer function can be computed using

$$
\left|H\left(e^{j \omega}\right)\right|^{2}=\left|\frac{p_{0}}{d_{0}}\right|^{2} \frac{\prod_{k=1}^{M}\left(e^{j \omega}-\xi_{k}\right)\left(e^{-j \omega}-\xi_{k}^{*}\right)}{\prod_{k=1}^{N}\left(e^{j \omega}-\lambda_{k}\right)\left(e^{-j \omega}-\lambda_{k}^{*}\right)}
$$

Geometric Interpretation of

 Frequency Response Computation- The factored form of the frequency
response

$$
H\left(e^{j \omega}\right)=\frac{p_{\mathrm{O}}}{d_{\mathrm{O}}} e^{j \omega(N-M)} \frac{\prod_{k=1}^{M}\left(e^{j \omega}-\xi_{k}\right)}{\prod_{k=1}^{N}\left(e^{j \omega}-\lambda_{k}\right)}
$$

is convenient to develop a geometric
interpretation of the frequency response computation from the pole-zero plot as ω
varies from 0 to 2π on the unit circle

- The geometric interpretation can be used to obtain a sketch of the response as a function of the frequency
- A typical factor in the factored form of the frequency response is given by

$$
\left(e^{j \omega}-\rho e^{j \phi}\right)
$$

where $\rho e^{j \phi}$ is a zero if it is zero factor or is a pole if it is a pole factor

- As shown below in the z-plane the factor $\left(e^{j \omega}-\rho e^{j \phi}\right)$ represents a vector starting at the point $z=\rho e^{j \phi}$ and ending on the unit circle at $z=e^{j \omega}$

- As ω is varied from 0 to 2π, the tip of the vector moves counterclockise from the point $z=1$ tracing the unit circle and back to the point $z=1$
- As indicated by

$$
\left|H\left(e^{j \omega}\right)\right|=\left|\frac{p_{0}}{d_{0}}\right| \frac{\prod_{k=1}^{M}\left|e^{j \omega}-\xi_{k}\right|}{\prod_{k=1}^{N}\left|e^{j \omega}-\lambda_{k}\right|}
$$

the magnitude response $\left|H\left(e^{j \omega}\right)\right|$ at a specific value of ω is given by the product of the magnitudes of all zero vectors divided by the product of the magnitudes of all pole vectors

- Likewise, from

$$
\begin{aligned}
& \arg H\left(e^{j \omega}\right)=\arg \left(p_{\mathrm{O}} / d_{\mathrm{O}}\right)+\omega(N-M) \\
& \quad+\sum_{k=1}^{M} \arg \left(e^{j \omega}-\xi_{k}\right)-\sum_{k=1}^{N} \arg \left(e^{j \omega}-\lambda_{k}\right)
\end{aligned}
$$

we observe that the phase response at a specific value of ω is obtained by adding the phase of the term p_{0} / d_{O} and the linear-phase term $\omega(N-M)$ to the sum of the angles of the zero vectors minus the angles of the pole vectors

- Thus, an approximate plot of the magnitude and phase responses of the transfer function of an LTI digital filter can be developed by examining the pole and zero locations
- Now, a zero (pole) vector has the smallest magnitude when $\omega=\phi$
- To highly attenuate signal components in a specified frequency range, we need to place zeros very close to or on the unit circle in this range
- Likewise, to highly emphasize signal components in a specified frequency range, we need to place poles very close to or on the unit circle in this range

Stability Condition in Terms of

 the Pole Locations- A causal LTI digital filter is BIBO stable if and only if its impulse response $h[n]$ is absolutely summable, i.e.,

$$
S=\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

- We now develop a stability condition in terms of the pole locations of the transfer function $H(z)$
- The ROC of the z-transform $H(z)$ of the impulse response sequence $h[n]$ is defined by values of $|z|=r$ for which $h[n] r^{-n}$ is absolutely summable
- Thus, if the ROC includes the unit circle $|z|$ $=1$, then the digital filter is stable, and vice versa
- In addition, for a stable and causal digital filter for which $h[n]$ is a right-sided sequence, the ROC will include the unit circle and entire z-plane including the point $z=\infty$
- An FIR digital filter with bounded impulse response is always stable
- On the other hand, an IIR filter may be unstable if not designed properly
- In addition, an originally stable IIR filter characterized by infinite precision coefficients may become unstable when coefficients get quantized due to implementation
- Example - Consider the causal IIR transfer function

$$
H(z)=\frac{1}{1-1.845 z^{-1}+0.850586 z^{-2}}
$$

- The plot of the impulse response coefficients is shown on the next slide

- As can be seen from the above plot, the impulse response coefficient $h[n]$ decays rapidly to zero value as n increases
- The absolute summability condition of $h[n]$ is satisfied
- Hence, $H(z)$ is a stable transfer function
- Now, consider the case when the transfer function coefficients are rounded to values with 2 digits after the decimal point:

$$
\hat{H}(z)=\frac{1}{1-1.85 z^{-1}+0.85 z^{-2}}
$$

- A plot of the impulse response of $\hat{h}[n]$ is shown below

- In this case, the impulse response coefficient $\hat{h}[n]$ increases rapidly to a constant value as n increases
- Hence, the absolute summability condition of is violated
- Thus, $\hat{H}(z)$ is an unstable transfer function
- The stability testing of a IIR transfer function is therefore an important problem
- In most cases it is difficult to compute the infinite sum

$$
S=\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

- For a causal IIR transfer function, the sum S can be computed approximately as

$$
S_{K}=\sum_{n=0}^{K-1}|h[n]|
$$

- The partial sum is computed for increasing values of K until the difference between a series of consecutive values of S_{K} is smaller than some arbitrarily chosen small number, which is typically 10^{-6}
- For a transfer function of very high order this approach may not be satisfactory
- An alternate, easy-to-test, stability condition is developed next
- Consider the causal IIR digital filter with a rational transfer function $H(z)$ given by

$$
H(z)=\frac{\sum_{k=0}^{M} p_{k} z^{-k}}{\sum_{k=0}^{N} d_{k} z^{-k}}
$$

- Its impulse response $\{h[h]\}$ is a right-sided sequence
- The ROC of $H(z)$ is exterior to a circle going through the pole furthest from $z=0$
- But stability requires that $\{h[n]\}$ be absolutely summable
- This in turn implies that the DTFT $H\left(e^{j \omega}\right)$ of $\{h[h]\}$ exists
- Now, if the ROC of the z-transform $H(z)$ includes the unit circle, then

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}
$$

- Conclusion: All poles of a causal stable transfer function $H(z)$ must be strictly inside the unit circle
- The stability region (shown shaded) in the z-plane is shown below

Stability Condition in Terms of the Pole Locations

- Example - The factored form of

$$
H(z)=\frac{1}{1-0.845 z^{-1}+0.850586 z^{-2}}
$$

is

$$
H(z)=\frac{1}{\left(1-0.902 z^{-1}\right)\left(1-0.943 z^{-1}\right)}
$$

which has a real pole at $z=0.902$ and a real pole at $z=0.943$

- Since both poles are inside the unit circle, $H(z)$ is BIBO stable

Stability Condition in Terms of the Pole Locations

- Example - The factored form of

$$
\hat{H}(z)=\frac{1}{1-1.85 z^{-1}+0.85 z^{-2}}
$$

is

$$
\hat{H}(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.85 z^{-1}\right)}
$$

which has a real pole on the unit circle at z
$=1$ and the other pole inside the unit circle

- Since both poles are not inside the unit circle, $H(z)$ is unstable

