EENG 479: Digital Signal Processing (DSP)

Lecture #9: Analog Filter Design Review

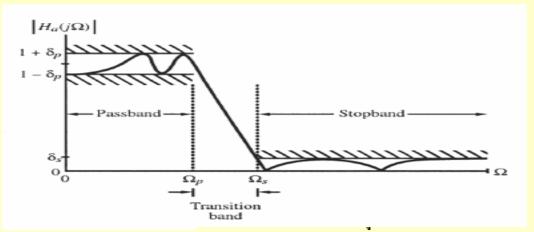
Prof. Mohab A. Mangoud

Professor of Wireless Communications (Networks, IoT and AI)
University of Bahrain, College of Engineering
Department of Electrical and Electronics Engineering
P.O.Box 32038- Kingdom of Bahrain

mmangoud@uob.edu.bh http://mangoud.com

Analog Lowpass Filter Specifications

• Typical magnitude response $|H_a(j\Omega)|$ of an analog lowpass filter may be given as indicated below



- In the **passband**, defined by $0 \le \Omega \le \Omega_n$, we require $|1-\delta_p \le |H_a(j\Omega)| \le 1+\delta_p, \quad |\Omega| \le \Omega_p$ i.e., $|H_a(j\Omega)|$ approximates unity within an error of $\pm \delta_p$
- In the stoppand, defined by $\Omega_s \leq \Omega < \infty$, we require $|H_a(j\Omega)| \le \delta_s, \quad \Omega_s \le |\Omega| < \infty$
 - i.e., $|H_a(j\Omega)|$ approximates zero within an error of δ_s

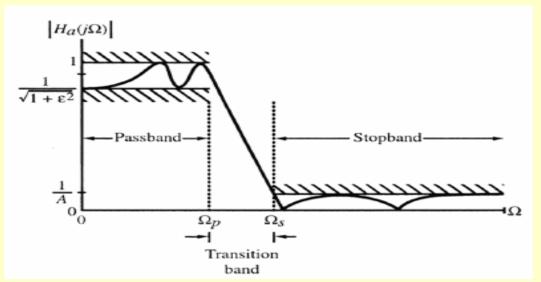
- Ω_p passband edge frequency
- Ω_s stopband edge frequency
- δ_p peak ripple value in the passband
- δ_s peak ripple value in the stopband
- Peak passband ripple

$$\alpha_p = -20\log_{10}(1 - \delta_p) dB$$

Minimum stopband attenuation

$$\alpha_s = -20\log_{10}(\delta_s)$$
 dB

 Magnitude specifications may alternately be given in a normalized form as indicated below



- Here, the maximum value of the magnitude in the passband assumed to be unity
- $1/\sqrt{1+\varepsilon^2}$ Maximum passband deviation, given by the minimum value of the magnitude in the passband

• Two additional parameters are defined -

(1) **Transition ratio**
$$k = \frac{\Omega_p}{\Omega_s}$$

For a lowpass filter k < 1

Maximum stopband magnitude

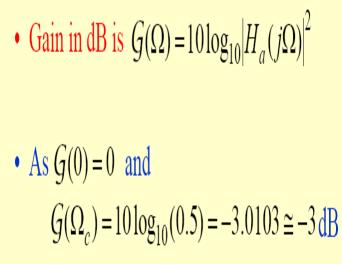
(2) Discrimination parameter
$$k_1 = \frac{\varepsilon}{\sqrt{A^2 - 4}}$$

Butterworth Approximation

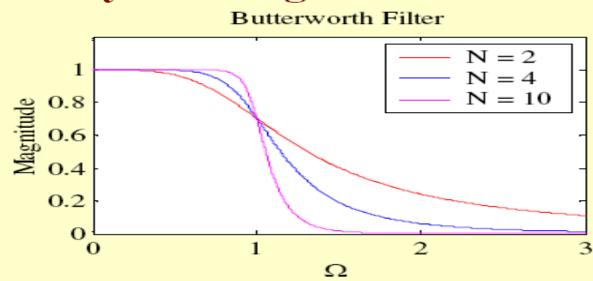
 The magnitude-square response of an N-th order analog lowpass Butterworth filter is given by

$$|H_a(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$$

- First 2N-1 derivatives of $|H_a(j\Omega)|^2$ at $\Omega = 0$ are equal to zero
- The Butterworth lowpass filter thus is said to have a **maximally-flat magnitude** at $\Omega = 0$



 Ω_c is called the **3-dB cutoff frequency**



• Typical magnitude responses with $\Omega_c = 1$

- Two parameters completely characterizing a Butterworth lowpass filter are Ω_c and N
- These are determined from the specified bandedges Ω_p and Ω_s , and minimum passband magnitude $1/\sqrt{1+\varepsilon^2}$, and maximum stopband ripple 1/A
- Ω_c and N are thus determined from $\left| H_a(j\Omega_p) \right|^2 = \frac{1}{1 + (\Omega_p/\Omega_c)^{2N}} = \frac{1}{1 + \varepsilon^2}$ $\left| H_a(j\Omega_s) \right|^2 = \frac{1}{1 + (\Omega_s/\Omega_c)^{2N}} = \frac{1}{A^2}$
- Solving the above we get

$$\frac{N}{2} = \frac{1}{2} \cdot \frac{\log_{10}[(A^2 - 1)/\varepsilon^2]}{\log_{10}(\Omega_s/\Omega_p)} = \frac{\log_{10}(1/k_1)}{\log_{10}(1/k)}$$

- Since order N must be an integer, value obtained is rounded up to the next highest integer
- This value of N is used next to determine Ω_o by satisfying either the stopband edge or the passband edge specification exactly
- If the stopband edge specification is satisfied, then the passband edge specification is exceeded providing a safety margin

Butterworth Approximation

 Transfer function of an analog Butterworth lowpass filter is given by

$$H_a(s) = \frac{C}{D_N(s)} = \frac{\Omega_c^N}{s^N + \sum_{\ell=0}^{N-1} d_{\ell} s^{\ell}} = \frac{\Omega_c^N}{\prod_{\ell=1}^{N} (s - p_{\ell})}$$

where

$$p_{\ell} = \Omega_c e^{j[\pi(N+2\ell-1)/2N]}, \quad 1 \le \ell \le N$$

• Denominator $D_N(s)$ is known as the **Butterworth polynomial** of order N

Example - Determine the lowest order of a Butterworth lowpass filter with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz

• Now $10\log_{10}\left(\frac{1}{1+\varepsilon^2}\right) = -1$ which yields $\varepsilon^2 = 0.25895$ and $10\log_{10}\left(\frac{1}{A^2}\right) = -40$

which yields $A^2 = 10,000$

• Therefore
$$\frac{1}{k_1} = \frac{\sqrt{A^2 - 1}}{\varepsilon} = 196.51334$$
and
$$\frac{1}{k} = \frac{\Omega_s}{\Omega_s} = 5$$

Hence

$$N = \frac{\log_{10}(1/k_1)}{\log_{10}(1/k)} = 3.2811$$

• We choose N=4

Chebyshev Approximation

 The magnitude-square response of an N-th order analog lowpass Type 1 Chebyshev filter is given by

$$|H_a(s)|^2 = \frac{1}{1 + \varepsilon^2 T_N^2(\Omega/\Omega_p)}$$

where $T_N(\Omega)$ is the Chebyshev polynomial of order N:

$$T_N(\Omega) = \begin{cases} \cos(N\cos^{-1}\Omega), & |\Omega| \le 1\\ \cosh(N\cosh^{-1}\Omega), & |\Omega| > 1 \end{cases}$$

 Typical magnitude response plots of the analog lowpass Type 1 Chebyshev filter are shown below

. . .

 If at Ω = Ω_s the magnitude is equal to 1/A, then

$$\left|H_a(j\Omega_s)\right|^2 = \frac{1}{1+\varepsilon^2 T_N^2(\Omega_s/\Omega_p)} = \frac{1}{A^2}$$

Solving the above we get

$$N = \frac{\cosh^{-1}(\sqrt{A^2 - 1}/\varepsilon)}{\cosh^{-1}(\Omega_s/\Omega_p)} = \frac{\cosh^{-1}(1/k_1)}{\cosh^{-1}(1/k)}$$

- Order N is chosen as the nearest integer greater than or equal to the above value
- The magnitude-square response of an N-th order analog lowpass Type 2 Chebyshev (also called inverse Chebyshev) filter is given by

$$\left|H_a(j\Omega)\right|^2 = \frac{1}{1 + \varepsilon^2 \left[\frac{T_N(\Omega_s/\Omega_p)}{T_N(\Omega_s/\Omega)}\right]^2}$$

where $T_N(\Omega)$ is the Chebyshev polynomial of order N Typical magnitude response plots of the analog lowpass Type 2 Chebyshev filter are shown below

• The order N of the Type 2 Chebyshev filter is determined from given ε , Ω_s , and A using

$$N = \frac{\cosh^{-1}(\sqrt{A^2 - 1}/\varepsilon)}{\cosh^{-1}(\Omega_s/\Omega_p)} = \frac{\cosh^{-1}(1/k_1)}{\cosh^{-1}(1/k)}$$

• Example - Determine the lowest order of a Chebyshev lowpass filter with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz -

$$N = \frac{\cosh^{-1}(1/k_1)}{\cosh^{-1}(1/k)} = 2.6059$$

Elliptic Approximation

• The square-magnitude response of an elliptic lowpass filter is given by

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \varepsilon^2 R_N^2(\Omega/\Omega_p)}$$

where $R_N(\Omega)$ is a rational function of order N satisfying $R_N(1/\Omega) = 1/R_N(\Omega)$, with the roots of its numerator lying in the interval $0 < \Omega < 1$ and the roots of its denominator lying in the interval $1 < \Omega < \infty$

• For given Ω_p , Ω_s , ϵ , and A, the filter order can be estimated using

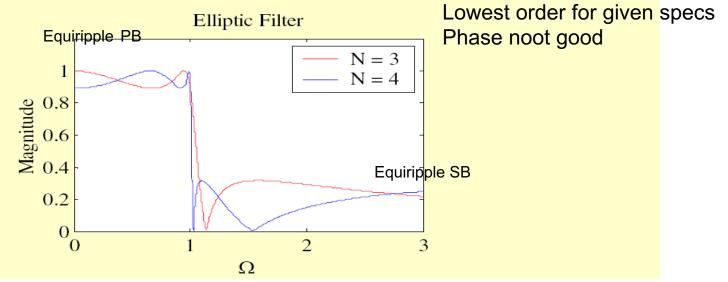
$$N \cong \frac{2 \log_{10}(4/k_1)}{\log_{10}(1/\rho)}$$

where
$$k' = \sqrt{1 - k^2}$$

$$\rho_0 = \frac{1 - \sqrt{k'}}{2(1 + \sqrt{k'})}$$

$$\rho = \rho_0 + 2(\rho_0)^5 + 15(\rho_0)^9 + 150(\rho_0)^{13}$$

- Example Determine the lowest order of a elliptic lowpass filter with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz Note: k = 0.2 and $1/k_1 = 196.5134$
- Substituting these values we get k' = 0.979796, $\rho_0 = 0.00255135$, $\rho = 0.0025513525$
- and hence N = 2.23308
- Choose N = 3
- Typical magnitude response plots with $\Omega_p = 1$ are shown below

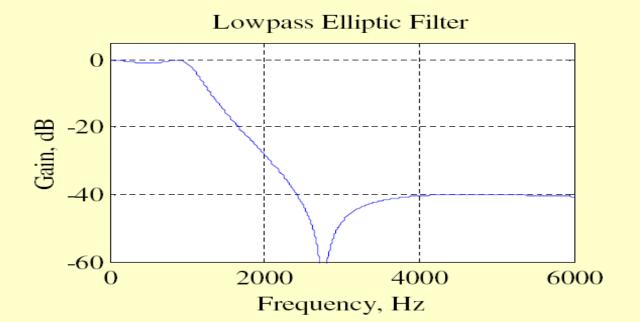


Analog Lowpass Filter Design

 Example - Design an elliptic lowpass filter of lowest order with a 1-dB cutoff frequency at 1 kHz and a minimum attenuation of 40 dB at 5 kHz

```
    Code fragments used

            [N, Wn] = ellipord(Wp, Ws, Rp, Rs, 's');
            [b, a] = ellip(N, Rp, Rs, Wn, 's');
            with Wp = 2*pi*1000;
            Ws = 2*pi*5000;
            Rp = 1;
            Rs = 40;
```



Design of Analog Highpass, Bandpass and Bandstop Filters

- Steps involved in the design process:
 Step 1 Develop of specifications of a prototype analog lowpass filter H_{LP}(s) from specifications of desired analog filter H_D(s) using a frequency transformation
 Step 2 Design the prototype analog lowpass filter
 Step 3 Determine the transfer function H_D(s) of desired analog filter by applying the inverse frequency transformation to H_{LP}(s)
- Let s denote the Laplace transform variable of prototype analog lowpass filter $H_{LP}(s)$ and \hat{s} denote the Laplace transform variable of desired analog filter $H_D(\hat{s})$
- The mapping from s-domain to \hat{s} -domain is given by the invertible transformation

$$s = F(\hat{s})$$
• Then $H_D(\hat{s}) = H_{LP}(s)|_{s=F(\hat{s})}$
 $H_{LP}(s) = H_D(\hat{s})|_{\hat{s}=F^{-1}(s)}$

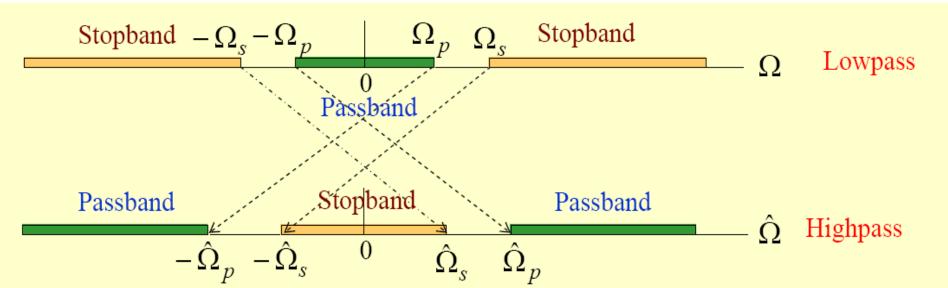
• Spectral Transformation:

$$S = \frac{\Omega_p \hat{\Omega}_p}{\hat{s}}$$

where Ω_p is the passband edge frequency of $H_{LP}(s)$ and $\hat{\Omega}_p$ is the passband edge frequency of $H_{HP}(\hat{s})$

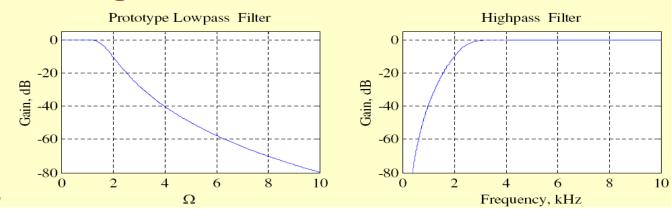
• On the imaginary axis the transformation is

$$\Omega = -\frac{\Omega_p \hat{\Omega}_p}{\hat{\Omega}}$$



- Example Design an analog Butterworth highpass filter with the specifications: $\hat{F}_p = 4 \text{ kHz}, \hat{F}_s = 1 \text{ kHz}, \alpha_p = 0.1 \text{ dB}, \alpha_s = 40 \text{ dB}$
- Choose $\Omega_p = 1$
- Then $\Omega_s = \frac{2\pi \hat{F}_p}{2\pi \hat{F}_s} = \frac{\hat{F}_p}{\hat{F}_s} = \frac{4000}{1000} = 4$
- Analog lowpass filter specifications: $\Omega_p = 1$, $\Omega_s = 4$, $\alpha_p = 0.1$ dB, $\alpha_s = 40$ dB
- · Code fragments used

Gain plots



Analog Bandpass Filter Design

• Spectral Transformation
$$s = \Omega_p \frac{\hat{s}^2 + \hat{\Omega}_o^2}{\hat{s}(\hat{\Omega}_{p2} - \hat{\Omega}_{p1})}$$

where Ω_p is the passband edge frequency of $H_{LP}(s)$, and $\hat{\Omega}_{p1}$ and $\hat{\Omega}_{p2}$ are the lower and upper passband edge frequencies of desired bandpass filter $H_{BP}(\hat{s})$

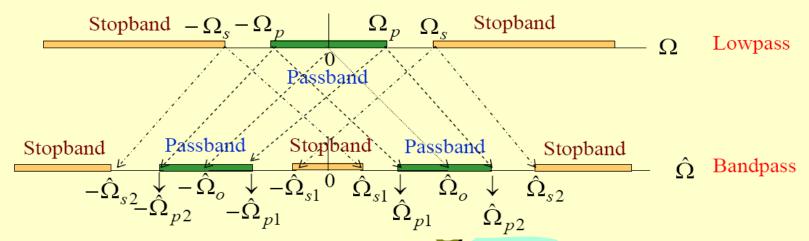
• On the imaginary axis the transformation is

$$\Omega = -\Omega_p \frac{\hat{\Omega}_o^2 - \hat{\Omega}^2}{\hat{\Omega} B_w}$$

where $B_w = \hat{\Omega}_{p2} - \hat{\Omega}_{p1}$ is the width of passband and $\hat{\Omega}_o$ is the **passband center frequency** of the bandpass filter

• Passband edge frequency $\pm \Omega_p$ is mapped into $\mp \hat{\Omega}_{p1}$ and $\pm \hat{\Omega}_{p2}$, lower and upper passband edge frequencies

$$\Omega = -\Omega_p \frac{\hat{\Omega}_o^2 - \hat{\Omega}^2}{\hat{\Omega} B_w}$$

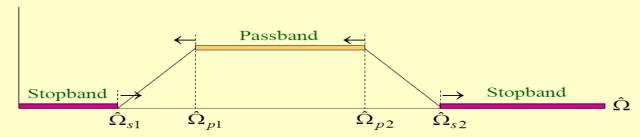


- Stopband edge frequency $\pm \Omega_s$ is mapped into $\mp \hat{\Omega}_{s1}$ and $\pm \hat{\Omega}_{s2}$, lower and upper stopband edge frequencies
- Also,

$$\hat{\Omega}_o^2 = \hat{\Omega}_{p1} \hat{\Omega}_{p2} = \hat{\Omega}_{s1} \hat{\Omega}_{s2}$$

• If bandedge frequencies do not satisfy the above condition, then one of the frequencies needs to be changed to a new value so that the condition is satisfied

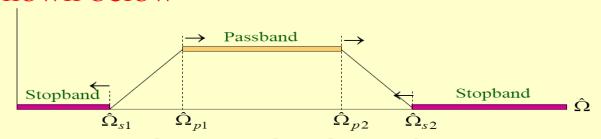
Case 1: $\hat{\Omega}_{p1}\hat{\Omega}_{p2} > \hat{\Omega}_{s1}\hat{\Omega}_{s2}$ To make $\hat{\Omega}_{p1}\hat{\Omega}_{p2} = \hat{\Omega}_{s1}\hat{\Omega}_{s2}$ we can either increase any one of the stopband edges or decrease any one of the passband edges as shown below



- (1) Decrease $\hat{\Omega}_{p1}$ to $\hat{\Omega}_{s1}\hat{\Omega}_{s2}/\hat{\Omega}_{p2}$ larger passband and shorter leftmost transition band
- (2) Increase $\hat{\Omega}_{s1}$ to $\hat{\Omega}_{p1}\hat{\Omega}_{p2}/\hat{\Omega}_{s2}$ No change in passband and shorter leftmost transition band
- Note: The condition $\hat{\Omega}_o^2 = \hat{\Omega}_{p1} \hat{\Omega}_{p2} = \hat{\Omega}_{s1} \hat{\Omega}_{s2}$ can also be satisfied by decreasing Ω_{p2} which is not acceptable as the passband is reduced from the desired value
- Alternately, the condition can be satisfied by increasing $\hat{\Omega}_{s2}$ which is not acceptable as the upper stop band is reduced from the desired value

• Case 2: $\hat{\Omega}_{p1}\hat{\Omega}_{p2} < \hat{\Omega}_{s1}\hat{\Omega}_{s2}$

To make $\hat{\Omega}_{p1}\hat{\Omega}_{p2} = \hat{\Omega}_{s1}\hat{\Omega}_{s2}$ we can either decrease any one of the stopband edges or increase any one of the passband edges as shown below



- (1) Increase $\hat{\Omega}_{p2}$ to $\hat{\Omega}_{s1}\hat{\Omega}_{s2}/\hat{\Omega}_{p1}$ larger passband and shorter rightmost transition band
- (2) Decrease $\hat{\Omega}_{s2}$ to $\hat{\Omega}_{p1}\hat{\Omega}_{p2}/\hat{\Omega}_{s1}$ No change in passband and shorter rightmost transition band
 - Note: The condition $\hat{\Omega}_o^2 = \hat{\Omega}_{p1} \hat{\Omega}_{p2} = \hat{\Omega}_{s1} \hat{\Omega}_{s2}$ can also be satisfied by increasing $\hat{\Omega}_{p1}$ which is not acceptable as the passband is reduced from the desired value
 - Alternately, the condition can be satisfied by decreasing $\hat{\Omega}_{s1}$ which is not acceptable as the lower stopband is reduced from the desired value

- Example Design an analog elliptic bandpass filter with the specifications: $\hat{F}_{p1} = 4 \text{ kHz}, \hat{F}_{p2} = 7 \text{ kHz}, \hat{F}_{s1} = 3 \text{ kHz}$ $\hat{F}_{s2} = 8 \text{ kHz}, \ \alpha_p = 1 \text{ dB}, \ \alpha_s = 22 \text{ dB}$
- Now $\hat{F}_{p1}\hat{F}_{p2} = 28 \times 10^6$ and $\hat{F}_{s1}\hat{F}_{s2} = 24 \times 10^6$
- Since $\hat{F}_{p1}\hat{F}_{p2} > \hat{F}_{s1}\hat{F}_{s2}$ we choose $\hat{F}_{p1} = \hat{F}_{s1}\hat{F}_{s2}/\hat{F}_{p2} = 3.571428 \text{ kHz}$
- We choose $\Omega_p = 1$
- Hence

$$\Omega_s = \frac{24 - 9}{(25/7) \times 3} = 1.4$$

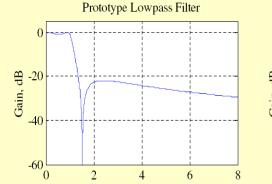
• Analog lowpass filter specifications: $\Omega_p = 1$

$$\Omega_s = 1.4$$
, $\alpha_p = 1$ dB, $\alpha_s = 22$ dB

[N, Wn] = ellipord(1, 1.4, 1, 22, 's'); [B, A] = ellip(N, 1, 22, Wn, 's'); [num, den]

= lp2bp(B, A, 2*pi*4.8989795, 2*pi*25/7);

Gain plot



Code fragments used

