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The Filrer Design Toolbox of MaTLAB has a large number of M-files to aid in the design of FIR digital
filters. This toolbox may be useful in many practical applications. The article by Losada in the Mathworks
website is recommended to the reader interested in finding out about some of the practical aspects of FIR
filter design.'*

10.8 Problems

10.1 Verify the FIR filter orders given in Table 10.1.

10.2 A lowpass FIR filter of order N = 75 is to be designed with a transition band given by wy — wp = 0.057
using the Parks—McClellan method. Determine the approximate value of the stopband attenuation e in dB and the
corresponding stopband ripple 85 of the designed filter if the filter order is estimated using each of the following
formulas: (a) Kaiser’s formula of Eq. (10.3), (b) Bellanger’s formula of Eq. (10.4), and (c) Hermann's formula of
Eq. (10.5). Assume the passband and stopband ripples to be the same.

10.3 Repeat Problem 10.2 if the filter is designed using the Kaiser’s window-based method.

10.4 Verify the expression for the impulse response coefficients f1psy [12] given in Eq. (10.20) for the zero-phase
multiband filter with a frequency response Hyyy (e/“) defined in Eq. (10.19) and shown in Figure 10.1.

10.5 Show that the ideal Hilbert transformer with a frequency response Hyy(ef?) defined in Eq. (10.21) has an
impulse response /1 yr[n] as given in Eg. (10.22). Since the impulse response is doubly infinite, the ideal discrele-
time Hilbert transformer is not realizable. To make it realizable, the impulse response has to be truncated to |n] < M.
What type of linear-phase FIR filter is the truncated impulse response? Plot the frequency response of the truncated
approximation for various values of M. Comment on your results.

10.6 Let H{.} denote the ideal operation of Hilbert transformation defined by

oQ
Hixln) = ) hyrin = elxle),

f{=—00
where h g7 [n] is as given in Eq. (10.22). Evaluate the following quantities:

() H{H{H{H{x[n]D1L  (b) Z x[ETH{x[e]).

{=—00
10.7 Let ity p[n] denote the impulse response of an ideal lowpass filter with a cutoff at & = /2. Show that
hgrln] = (=1)"2hp p(2n]

is the impulse response of an ideal Hilbert transformer [Che2001]. If /iy p[#] is the impulse response of a causal Type
1 FIR lowpass filter of order N with M = N/2 odd, then show that the Hilbert transformer obtained using the above
relation is a causal Type 3 FIR filter of order M.

10.8 Show that the ideal differentiator with a frequency response Hp; r(e/®) defined in Eq. (10.23) has an impulse
response lipjpla] as given in Eq. (10.24). Since the impulse response is doubly infinite, the ideal discrete-time
differentiator is not realizable. To make it realizable, the impulse response has to be truncated to |n] < M. Whalt type
of linear-phase FIR filter is the truncated impulse response? Plot the frequency response of the truncated approximation
for various values of M. Comment on your results.

I45pe the white paper by R. Losada in the website www.mathworks.com/products/filterdesign/.
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10.9 Develop the expression for the impulse response f g p[n] of & causal highpass FIR filter of length N = 2M + |
obtained by truncating and shifting the impulse response /ty p[n] of the ideal highpass filter given by Eq. (10.16).

Show that the causal lowpass FIR filter I}LP [n] of Eq. (10.15) and I]Hp [n] are a delay-complementary pair.

10.10 Determine the impulse response /iy 1 p[n] of a zero-phase ideal linear passband lowpass filter characterized by
a frequency response shown in Figure P10.1(a).

10.11 Determine the impulse response /i gz py 1] of a zero-phase ideal band-limited differentiator characterized by
a frequency response shown in Figure P10.1(b).
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Figure P10.1

10.12 The magnitude response of an ideal notch filter Hpgicn(z) is defined by

0, |w|l=w,,

4 (/)] = _
[Hnotch ()| {1, eIk (10.115)

where w,, is the notch frequency. Determine its impulse response ltpgien[n1] [Yu90].

10.13 Let hig[n], ~00 < n < oo, denote the impulse response samples of a zero-phase filter with a frequency
response Hy(e/®). We have shown in Section 10.2.1 that the frequency response H; (e/*) of the zero-phase FIR filter
hy[n], =M < n < M, obtained by multiplying /4[] with a rectangular window wg[n], —M < n < M, has the least
integral-squared error ® g defined in Eq. (10.9). Let @ g, denote the integral-squared error if a length-2M + | Hann
. window is used to develop the FIR filter. Determine an expression for the excess error ®eycess = Pp — Prann.

10.14 Repeat Problem 10.13 if a Hamming window is used instead.

10.15 For each of the lowpass filter specifications given below, design an FIR filter with the smallest length meeting
the specifications using the window-based approach, and plot its magnitude response using MATLAB:
(a) wp = 0.477, ws = 0.597, §,, = 0.001, §; = 0.007, (b) wp = 0.617, w; = 0.787, 6, = 0.001, 5 = 0.002.

10.16 Design a bandpass FIR filter with the smallest length using the window-based approach and meeting the
following specifications: wp| = 0457, wy2 = 0.657, wsy = 0.37, w5y = 0.8, 8p = 0.01, §;; = 0.008, and
8,2 = 0.05, where 8,1 and 857 are, respectively, the ripple in the lower and upper stopbands. Plot the magnitude
response of the filter designed using MATLAB.

10,17 Design a bandstop FIR filter with the smallest length using the window-based approach and meeting the
following specifications: wp) = 0.37, wp2 = 0.87w, ) = 04571, w2 = 0.657,8p1 = 0.05, 8,2 = 0.009, and
85 = 0.02, where 8,1 and 87 are, respectively, the ripple in the lower and upper passbands. Plot the magnitude
response of the filter designed using MATLAB.
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a stopband edge at ws, and

580

owpass filter with a passband edge at wp.

10.18 The frequency response of a zero-phase 1
a raised cosine transition function is given by [Bur92], [Par87]
1; 0 5 |w| < wﬁ'
HLP{ej(U) = % (l 4+ COS (71'{5::)::!:'[:))) ’ fﬂp < lwl < wy, (]01 16)
0, wy < |w| <.
(10.117)

Show that its impulse response is of the form
sin{weit)

on

- cos(Awn/2) ]
1Lpinl =

e 1 — (Aw/rz‘)2112
where Aw = wy — Wp and o = (wp + ws)/2.
g, and Blackman window sequences given in Eqgs. (10.30) to (10.32) are

10.19 The length-(2M + 1) Hann, Hammin
all of the form of raised cosine windows and can be expressed a8

2mn G dmn {0.118
Ly cos M1 wprlnl, (10. }

w | = |- pcos
Gelnl [ B (2 IV

ress the Fourier transform of the above generalized
Jj®Y . From this expression, determine

rectangular window sequence. Exp
form of the rectangular window W (e

where wg[nlisalength-2M+1)
g, and Blackman window sequences.

cosine window in terms of the Fourier trans

the Fourier transform of the Hann, Hammin
b,

gital filter approximating a fractional delay z~

10.20 Tn this problem, we consider the design of an FIR di

N
D= Zh[n]z_”,
n=(0

where the delay D is a positive real rational number.
obtained using the Lagrange interpolation method 15 yre given by [Laa%6]

(a) Show that the filter coefficients
B i
0<n<N.

hinl = g
iy n—K
k#n

£90/13 samples. Using MATLAB, plot the group

(b) Design a length-21 FIR fractional delay filter with a delay o
delay response of the designed filter along with that of the ideal fractional delay filter. Comment on your results.
a fundamental frequency wp and its harmohics has a frequency

(10.119)

10.21 An ideal zero-phase comb filter with notches at
0, w=kw, 0=k=M,

response given by
Heomp (/™) = l T
comb(e”’™) 1, otherwise.

f the form x[n] = sln] + rlnl, where s[n] is the desired signal and r[n] =
monic interference with a fundamental frequency wy, the comb filter suppresses

If the input to the comb filter is o
27w, denote the fractional sample delay.

ZAM oAk sin{kwgit + ¢y) s the har

the interference and generates s[z2] as its outpul. Let D=
(a) Show that rln — D} =r[nl.
afiler Hiz)=1- z_D whose input is x[n}, show that y[n] does not

(b) Next, by computing the output y[n] of
contain any harmonic interference.

15g¢0 Section 13.5.2.
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(c) Even though the filter H(z) = 1 — z~ D eliminates the harmonic interference completely, it does not have a
unity magnitude at frequencies w # ke, thus introducing signal distortion at its output. The distortion in the passband
of H(z) can be eliminated by modifying the filter according to [Pei98]

| ——D
He(z) = ]——W‘
where 0 < p < 1. In practice, p should be close to 1. Using MATLAB, plot the magnitude response of H.(z) for
wp = 0.227 and p = 0.99.
(d) Develop an efficient realization of the improved comb filter H.(z).

10.22 Using the method of Problem 10.21 and the FIR fractional delay filter design method of Problem 10.20, design
a comb filter of order 18 for w, = 0.187 and p = 0.98. Using MATLAB, plot the magnitude response of the designed
filter.

10.23 Using the method of Problem 10.21 and the allpass fractional delay filter design method of Problem 9.29,
design an IIR comb filter of order 11 for w, = 0.187 and p = 0.98. Using MATLAB, plot the magnitude response of
the designed filter.

10.24 By computing the inverse discrete-time Fourier transform of the frequency response Hy p(e/®) of the zero-
phase medified lowpass filter of Figure 10.13(a) with a first-order spline as the transition function, verify the expression
for its impulse response /1y p[n] as given in Eq. (10.43). Show that /iy p[n] of Eq. (10.43) can also be derived by
computing the inverse discrete-time Fourier transform of the derivative function G(ef‘”) of Figure 10.13(b} and then
using the differentiation-in-frequency property of the discrete-time Fourier transform given in Table 3.3.

10.25 Show that the impulse response /iy p[n] of the zero-phase modified lowpass filter with a Pth-order spline as
the transition function is given by Eq. (10.44).

10.26 Prove Eqs. (10.87a) and (10.87b).

10.27 Many applications require the fitting of a set of 2L + 1 equally spaced data samples x[n] by a smooth polynomial
xq(r)ofdegree N where N < 2L. Inthe least-squares fitting approach, the polynomial coefficientse;, i =0, 1, ..., N,
are determined so that the mean-square error
L
2
elo) = Y [x[k] - xa(k))? (10.120)
hk=—L
is a minimum [Ham89]. In smoothing a very long data sequence x[] based on the least-squares fitting approach, the
central sample in a set of consecutive 2L + 1 data samples is replaced by the polynomial coefficient minimizing the
corresponding mean-square error.
(a) Develop the smoothing algorithm for N = 1 and L = 5, and show that it is a moving average FIR filter of
length 5.
(b) Develop the smoothing algorithm for N = 2 and L = 5. What type of digital filter is represented by this
algorithm?
(c) By comparing the frequency responses of the previous two FIR smoothing filters, select the filter that provides
better smoothing.

10.28 An improved smoothing algorithm is Spencer’s 15-point smoothing formula given by [Ham89]

vlnl = 3i5 {=3x[n = 71 — 6x[n — 6] — Sx[n — 5] + 3x[n — 4]
+21x[n — 3] +46x[n — 2] + 67x[n — 1]+ 74x[n]
+67x[n+ 114+ 46x[n + 2]+ 21x[n + 3]+ 3x[n + 4]
—35x[n+4+35]—6x[n+6]—3xn+17]). (10.121)
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Evaluate its frequency response and, comparing it with that of the two smoothing filters of Problem 10.27, show why
Spencer’s formula yields the betier result.

10.29 In Problem 9.3, we considered filtering by a cascade of a number of identical filters. While the cascade
provides more stopband attenuation than that obtained by a single filter section, it also increases the passband ripple
or, in effect, decreases the passband width for a given maximum passband deviation. In the case of an FIR filter H(2)
with a symmetric impulse response, improved passband and stopband performances can be achieved by employing
the filter sharpening approach [Kai77] in which the overall system G (z) is implemented as

L
Gy =Y alH@I, (10.122)
|

where {a] are real constants. In this problem, we outline the methad of selecting the weighting coefficients {c}
for a given L. It follows from the above that G(z) is also an FIR filter with a symmetric impulse response. Let v
denote a specific value of the amplitude response of H(z) at a given angular frequency w. If we denote the value of
the amplitude response of G(z) at this value of @ as P(x), then it is related to x through

L
Py = apxt. (10.123)
=1

P(x) is called the amplitude change function. For a BR transfer function H(z), 0 < x < 1, where x = 0 is in the
stopband and x = 1 is in the passband. If we further desire G(z) to be a BR transfer function, then the amplitude
change function must satisfy the two basic properties P(0) = O and P(1) = 1. Additional conditions on the amplitude
change function are obtained by constraining the behavior of its slope atx = Qand x = 1. To improve the performance
of G(z) in the stopband, we need to ensure

d* P(x)

Fr =0, k=l (10.124)

x=0

and to improve the performance of G(z) in the passband, we need to ensure

d* P(x)

= L — ‘) 7
e 0, k=12,...,m, (10.125)

where m 41 = L — 1. Determine the coefficients {aeg) for L = 3,4, and 3,

10.30 Consider a Type 3 linear-phase FIR filter with an amplitude response as given in Eq. (10.54). Show that if the
amplitude response is symmetric, that is, H(w) = H(w — w), then it is possible to choose the parameters clk] of
Eq. (10.54) so that the even-indexed impulse response samples /i[n] are zero.

10.31 In the frequency sampling approach of FIR filter design, the specified frequency response Hy(ed®) is first
uniformly sampled at M equally spaced points wp = 2rk/M, 0 = k < M — 1, providing M frequency samples
H[k] = Hy(ed). These M frequency samples constitute an M-point DFT H[k], whose M-point inverse-DFT thus
yields the impulse response coefficients /[n] of the FIR filter of length M [Gol69a]. The basic assumption here is
that the specified frequency response is uniguely characterized by the M frequency samples and, hence, can be fully
recovered from these samples.

() Show that the transfer function H(z) of the FIR filter can be expressed as

PN ek 20 Sl

(b) Develop a realization of the FIR filter based on the above expression.
(c) Show that the frequency response H (/@) of the FIR filter designed via the frequency sampling-based approach
has exactly the specified frequency samples H (¢/“%) = HIk] at wp = 2wk/M,0 < k<M-—1.




10.8. Problems 583

10.32 Let |Hy(e/®)| denote the desired magnitude response of a real linear-phase FIR filter of length M.
(a) For M odd (Type 1 FIR filter), show that the DFT samples H[k] needed for a frequency sampling-based design
are given by

|Hy (ejzmch)lg—jznk(Mq)/zM' Ty Ly P

H[k] =
[%] \H, (ejz,-rk/M)lejZ:rr(M—k)(Mul)/ZM‘ Jo M:H o M—1.

(10.126)

(b) For M even (Type 2 FIR filter), show that the DFT samples H[k] needed for a frequency sampling-based
design are given by

|Hy (c,,u :r.k/M)Ie—er:k(Mﬁl)/ZM, k=0,1,..., % _q,
HIk]= {0, k=4, (10.127)
|H, (ngrrk/M)leerr(M—k)(M—l)/ZM" k=Mt M~

10.33 Design a linear-phase FIR lowpass filter of length 19 with a passband edge at wp = 0.557 using the frequency
sampling approach. Assume an ideal brickwall characteristic for the desired magnitude response.

(a) Using Eq. (10.126), develop the exact values for the desired frequency samples.

(b) Using MATLAB, plot the magnitude response of the designed filter.

10.34 Design a linear-phase FIR lowpass filter of length 39 with a passband edge at wp = 0.357 using the frequency
sampling approach. Assume an ideal brickwall characteristic for the desired magnitude response.

(a) Using Eq. (10.126), develop the exact values for the desired frequency samples.

(b) Using MATLAB, plot the magnitude response of the designed filter.

10.35 By solving Eq. (10.70), derive the value of ¢ given by Eq. (10.71).

10.36 Determine the weighting function W (ew) that is to be used to design a Type | linear-phase FIR lowpass filter
using the Parks—-McClellan method to meet the following specifications: wp = 0457, wy = 0.6m, §p = 0.2043, and
8; = 0.0454,

10.37 Determine the weighting function W (w) that is to be used to design a Type 1 linear-phase FIR highpass filter
using the Parks—McClellan method to meet the following specifications: wp = 0.7, wy = 0.55m, 8, = 0.03808,
and §; = 0.0112.

10.38 Determine the weighting function W (w) that is to be used to design a Type | lincar-phase FIR bandpass
filter using the Parks—McClellan method to meet the following specifications: wp) = 0.55m, wpy = 0.7, wy) =
0447, wyn = 0.827, 8, = 0.01, 8| = 0.007, and 853 = 0.002, where 81 and ;2 are, respectively, the ripples in
the lower and upper stopbands.

10.39 Show that the condition of Eq. (10.90) on the impulse response samples /1 g7 [1] of an ideal Hilbert transformer
cannot be met by a Type 4 linear-phase FIR filter.

10.40 The warped discrete Fourier transform (WDFT) can be employed to determine the N frequency samples of
the z-transform X (z) of a length-N sequence x[n] at a warped frequency scale on the unit circle. The N-point WDFT
X[A] of x[n] is given by the N equally spaced frequency samples on the unit circle of the modified z-transform X ()
obtained by applying an allpass first-order spectral transformation to X (z) [Mak2001]:

P

X3 = X(z)lz_1=_a+.-| =0®" (10.128)

l—ai™
where || < 1. Thus, the N-point WDFT X[k] of x[n] is given by
Xkl = X@)lsepjomion, 0<k<N -1 (10.129)



584 Chapter 10: FIR Digital Filter Design

(1) Develop the expressions for P(2) and D(Z).
(b) If we denote

N—1 N-—1
P = Z pln)z ™" and DGy = Y din}E™",
n={) n=0

show that X[k] = P[kl/ D1k, where P[k] and D|k] are, respectively, the N-point DFTs of the sequences p[n] and
dln]. N i

{c) If we denote P = [p[0] p[!] <o p[N — ]1}! ,and X = [x[0] x[1] ---x[N — 1]]’ ,showthat P = Q - X,
where Q = g, s]isareal N x N matrix whose first row is given by gg ¢ = ¥, firstcolumn is givenby g0 =N-1l Cpa",
and remaining elements g5 can be derived using the recursion relation

Gr.s = qr—15—1 T 0Grs—1 — C4r—1s-

10.9 MartLas Exercises

M 10.1 Plot the magnitude response of a linear-phase FIR highpass filter by truncating the impulse response hygplnl
of the ideal highpass filter of Eq. (10.16) to length N = 2M + 1 for two different values of M, and show that the
wuncated filter exhibits oscillatory behavior on both sides of the cutoff frequency.

M 10.2 Plot the magnitude response of a linear-phase FIR bandpass filier by truncating the impulse response hgplnl
of the ideal bandpass filter of Eq. (10.17) to length N = 2M + 1 for two different values of M, and show that the
truncated filter exhibits oscillatory behavior on both sides of the cutoff frequency.

M 10.3 Plot the magnitude response of a linear-phase FIR Hilbert transformer by truncating the impulse response
I g L] of the ideal Hilbert transformer of Eq. (10.22) to length N = 2M + 1 for two different values of M, and show
that the truncated filter exhibits oscillatory behavior near @ = Dandw =,

M 10.4 The impulse response obtained by convolving K rectangular windows of length N each approximates an
ideal zero-mean FIR Gaussian filter. Using the M-file firgauss, generate several such filters, and show that the
approximation gets better with an increase in K or V.

M 10.5 Write a MATLAB program to design a linear-phase FIR notch filter by windowing the impulse response of the
ideal notch filter of Problem 10.12. Using this program, design an FIR notch filter of order 36 operating at a 500-Hz
sampling rate with a notch frequency of 50 Hz.

M 10.6 Determine a linear approximation ag + (X 0 the quadratic function D(x) = 3.242 + 4.05x — 5.5 defined
for the range —3 < x < 2 by minimizing the peak value of the absolute error | D(x) — ap — ajxl, i€,

max | D(x) —ag —ajx|.
—3=<x<2

using the Remez algorithm. Plot the error function after convergence of the algorithm.

M 10.7 Determine a quadratic approximation aq +aj¥ +aax? to the cubic function D(x) = —5x3 024748y 4355

defined for the range —2 < x < 2 by minimizing the peak value of the absolute error ID(,\') —ag—d1x — arx?|.ie.,

2
max |D(x) —ag—ajx —ayx”
—2=<x<2

.

using the Remez algorithm. Plot the error function after convergence of the algorithm.
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@msing the windowed Fourier series approach, design a linear-phase FIR lowpass filter with the following
specifications: passband edge at 4 rad/sec, stopband edge at 6 rad/sec, maximum passband attenuation of 0.2 dB,
minimum stopband attenuation of 42 dB, and a sampling frequency of 18 rad/sec. Use each of the following windows
for the design: Hamming, Hann, and Blackman. Show the impulse response coefficients, and plot the gain response
of the designed filters for each case. Comment on your results, Do not use the M-file fir1.

M 10.9 Repeat Exercise M10.8 using the Kaiser window. Do not use the M-file £irl.

o

M 10.10/ Using the windowed Fourier series approach, design a linear-phase FIR lowpass filter of lowest order with
the following specifications: passband edge at 0.4, stopband edge at 0.6, and minimum stopband attenuation of 42
dB. Which window function is appropriate for this design? Show the impulse response coefficients, and plot the gain
response of the designed filter. Comment on your results. Do not use the M-file £ir1.

M 10.11 Repeat Exercise M 10.10 using the Dolph-Chebyshev window. Do not use the M-file £ir1. Compare your
results with that obtained in Exercise M10.10.

M 10.12 Repeat Exercise M10.10 using the M-file £1r1. Compare yourresults with that obtained in Exercise M10.10.

M 10.13 Design a linear-phase highpass FIR filter of length 36 with a passband edge at wp = 0.457 using the
frequency sampling approach. Show the impulse response coefficients, and plot the magnitude response of the
designed filter using MATLAB.

M 10.14 Design a linear-phase bandpass FIR filter of order 45 with passband edges at w),| = 0.5 and wpp = 0.7%
using the frequency sampling approach. Show the impulse response coefficients, and plot the magnitude response of
the designed filter using MATLAB.

M 10.15 Using the frequency sampling-based approach, redesign the linear-phase lowpass filter of Problem 10.34 by
including a transition band with one frequency sample of magnitude 1/2. Plot the magnitude response of the new filter
using MATLAB, and compare it with that obtained in Problem 10.34.

M 10.16 Repeat Exercise M10.15 by including a transition band with two frequency samples of magnitude 2/3 and
1/3, respectively.

Wesign the linear-phase FIR lowpass filter of Exercise M10.8 using the function £irl of MATLAB. Use
each of the following windows for the design: Hamming, Hann, Blackman, and Kaiser. Show the impulse response
coefficients, and plot the gain response of the designed filters for each case. Compare your results with those obtained
in Exercises M10.8 and M10.9.

M ))9 Using the M-file £ir1, design alinear-phase FIR highpass filter with the following specifications: stopband
edge at 0.4, passband edge at 0.557, maximum passband attenuation of 0.1 dB, and minimum stopband attenuation
of 42 dB. Use each of the following windows for the design: Hamming, Hann, Blackman, and Kaiser. Show the
impulse response coefficients, and plot the gain response of the designed filters for each case. Comment on your
results.

M 10.19 Using the M-file £1r1, design a linear-phase FIR bandpass filter with the following specifications: stopband
edgesat0.55 and (.75, passband edges at 0.657 and 0.857, maximum passband attenuation of 0.2 dB, and minimum
stopband attenuation of 42 dB. Use each of the following windows for the design: Hamming, Hann, Blackman, and
Kaiser. Show the impulse response coefficients, and plot the gain response of the designed filters for each case.
Comment on your results,
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M 10.20 Design 2 two-channel crossover FIR lowpass and highpass filter pair for digital audio applications. The
lowpass and the highpass filters are of length 31 and have a crossover frequency of 15 kHz operating at a sampling
rate of 70 kHz. Use the function £ir1 with a Hamming window to design the lowpass filter, while the highpass filter
is derived from the lowpass filter using the delay-complementary property. Plot the gain responses of both filters on
the same figure. What is the minimum number of delays and multipliers needed to implement the crossover network?

M 10.21 Design a three-channel crossover FIR filter system for digital audio applications. All filters are of length 33
and operate at a sampling rate of 44.1 kHz., The two crossover frequencies are at 5.5 kHz and 12 kHz, respectively.
Use the function £ir1 with a Hann window to design the lowpass and the highpass filters, while the bandpass filter is
derived from the lowpass and highpass filters using the delay-complementary property. Plot the gain responses of all
filters on the same figure. What is the minimum number of delays and multipliers needed to implement the crossover
network?

M 10.22 The M-file £ir2 is employed to design FIR filters with arbitrarily shaped magnitude responses. Using this
function, design an FIR filter of order 70 with three different constant magnitude levels: 0.2 in the frequency range 0
to 0.35, 1.0 in the frequency range 0.4 to 0.7, and 0.6 in the frequency range 0.72 to 1.0, Plot the gain response of the
designed filter.

M 10.23 Design the linear-phase FIR lowpass filter of Problem10.36 using the function remez and plot its magnitude
response.

M 10.24 Design the linear-phase FIR highpass filter of Problem10.37 using the function remez and plotits magnitude
response.

M 10.25 Design the linear-phase FIR bandpass filter of Problem10.38 using the function remez and plot its magnitude
response.

M 10.26 Design a length-30 discrete-time FIR differentiator using the function remez and plot its magnitude re-
sponse.

M 10.27 Design a 30th-order FIR Hilbert transformer using the function remez. The passband is from 0.077 to
0.957. The two stopbands are from 0.027 to 0.057, and from 0.97x to 7. Plot its magnitude response.

M 10.28 Design a minimum-phase lowpass FIR filter with the passband edge at wp = 0.357, stopband edge at
wy = 0.5, passband ripple of R, = 1dB, and a minimum stopband attenuation of Ry = 28 dB.

M 10.29 Determine the minimum-phase spectral factor of the polynomial

0(z) = 2.4+ 6,76z~ +26.15:72 +68.43273 + 186837 +326.5127° +565.53: 7% +678.95277 + 805.24z~%
4 678.95:7 4+ 565.532~ 10 + 326,512~ "1 + 186.83z 12 + 68.4327 13 +26.15: 71 + 6,76z~ + 242716,

M 10.30 Design a linear-phase narrow-band FIR lowpass filter using the interpolated FIR filter design approach to
meet the following specifications: wp = 0.7, wy = 0.157, 6p = 0.001, and &; = 0.001.

M 10.31 Design a linear-phase narrow-band FIR highpass filter using the interpolated FIR filter design approach to
meet the following specifications: wp = 0.9, ws = 0.957, §p = 0.002, and &; = 0.004.

M 10.32 Another approach to the design of a computationally efficient FIR filter is the prefilter-equalizer method
[Ada83]. In this method, first, a computationally efficient FIR prefilter H(z) with a frequency response reasonably
close to the desired response is selected. Next, an FIR equalizer F(z) is designed so that the cascade of the prefilter
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and the equalizer meets the desired specifications. An attractive prefilter structure for the design of a lowpass FIR
filter is the recursive running sum (RRS) FIR filter of order N, which has a transfer function

] s Z—(N-H)

H(z) = -

1-2
The first null of the frequency response of the RRS filter is at @ = 27/(N + 1). Thus, if the desired stopband
edge is at wy, the order of the RRS filter should be chosen as N = 2 fws. If N is a fraction, then both the integer
values nearest to 27 /w; are good candidates for the order of the RRS filter. The Park-McClellan algorithm can be
modified to incorporate the frequency response of the RRS filter in the weighting function of the error function W(w)
of Eq. (9.48). Using the prefilter-equalizer approach, design a computationally efficient narrow-band FIR lowpass
filter with the following specifications: wp = 0.051, wg = 0.157, ap =0.15dB, and oy = 40 dB.



