160 Chapter 3: Discrete-Time Fourier Transform

50

Phase delay, samples

150 : - : :
0 0.2 04 06 0.3 1

W/

Figure 3.17: Phase delay of the frequency respense function of Example 3.21.

Likewise, the group delay can be determined in MATLAB using the M-file grpdelay. Several options
are also available with this function. We illustrate its use in Example 3.22.

EXAMPLE 3.22  Group Delay Computation Using MATLAB

Using MATLAB, we evaluate the group delay of the frequency response function of Example 3.21. The MATLAB
code fragments used to compute the phase delay vector are

num = 0.136728736*[1 0 -11;
den = [1 -D0.53353098 0.726542528];
[gd,w] = grpdelay(num,den, 1024} ;

The plot of the group delay evaluated using MATLAB is shown in Figure 3.18.

3.10 Summary

This chapter provided a short review of the continuous-time Fourier transform (CTFT) representations
of continuous-time signals and systems. The discrete-time Fourier transform (DTFT) and its inverse are
introduced next along with a discussion of the convergence of the DTFT. Properties of the DTFT are
reviewed and the unwrapping of the phase function to remove certain discontinuities in the DTFT is
discussed. The concept of the frequency response of a linear, time-irfvariant (LTI) discrete-time system
is then introduced followed by a careful examination of the difference between phase and group delays
associated with the frequency response.

3.11 Problems

3.1 Show that the absolute value of the CTFT X, (j2) defined in Eq. (3.1) is finite if x,(z) is absolutely integrable.

3.2 Determine the CTFT of the following continuous-time functions defined for —oco < ¢ < c:
(@) ya(t) = cos(Ro1), (B) ua(t) =™, (©) va(1) = &/, (d) palt) = Y30 8(t — £T).

3.3 Determine the CTFT of the following continuous-time functions defined for —oo < t < oot
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Figure 3.18: Group delay of the frequency response function of Example 3.21.
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=1 (b t—{l‘ £z, (1) = 11 lrlj?’ (d) o (1) = 1—2Jt, \I\<%,
@) =1, (b)p@)= 0 r=0 (©) xa() = 1 7. |;|_?, Ya(t) = o mz%’
0, [t > oD
3.4 The Gaussian density function, defined in Eq. (A.6), repeated below for convenience
1
hit) = ——e~t—W*/20%, (3.123)

o+/(2m)

where ¢ and  are, respectively, the variance and the mean of the density function. A continuous-time filter with an
impulse response as given by Eq. (3.123) with zero mean is called a Gaussian filter: Show that the CTFT of h(¢) is
also a Gaussian funclion of €2.

3.5 The finite-energy function x,(r) = sin(¢)/x¢ is not absolutely summable. Show that its CTFT is given by

_ 1, 1Q<l,
X“(JQ):{O }Q:>l.

3.6 Consider the CTFT pair
20) &5 Xa(7 ).
Prove the following properties of the CTFT. v
(a) Time-shifting Property: x,(r — t5) SIEl Xo(jQ)e IS0,
(b) Frequency-shifting Property: x,(z)e/ % o Xa (82~ ),
(c) Symmetry Property: X,(1) (F—F»r 2 xg(—jR),
(d) The Scaling Property: x;(at) (<:T—>FT ﬁXﬂ (]%)
(e) Time Differentiation Property: %’}ﬁ Cr<—F>T JRXa(jS2).

3.7 Let X,(j2) denote the CTFT of a real-valued continuous-time function x, (). Show that the magnitude spectrum
[ X4 ()| is an even function of §2 and the phase spectrum 6(2) = arg{ X, (j2)} is an odd function of §2.

3.8 Show that the CTFT of the Hilbert transformer defined by Eq. (1.4) is

com | —F =0,
HHT(JQ)—{J—’ Q<0

o
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3.9 Letx(r) be areal-valued input signal with a CTFT X (jQ) = X ,(j Q)+ X, (jQ), where X (,§2) is the portion of
X (j2) occupying the positive frequency range and X, (j2) is the portion of X (7€2) occupying the negative frequency
range. Let X(f) denote the output of an Hilbert transformer with an input x(r). Show that the CTFT Y (j ) of the
complex-valued signal y(t) = x(¢) + jx(z) is given by Y () = 2X ,(j Q). Thus, the spectrum of y(7) occupies only
the positive frequency range.

3.10 Compute the total energy of the continuous-time signal of Eq. (3.4) with @ = 0.5 and determine its 80%
bandwidth,

3. 11 Show that the DTFT of g [n] is given by —— - ﬁjm + 302 o m8(w+ 2mk).
3.12 Show that the DTFT of the sequence x[n] = 1, —00 < n < oo, is given by X (¢/®) = Y% o 2mb(w+2mk).

3.13 Determine the DTFT of the two-sided sequence y[r] = a'”', || < 1.

3.14 In Example 3.8, we showed that the inverse DTFT Ay p[n] of the DTFT Hy p (e/®) shown in Figure 3.5 is given
by Eq. (3.49). Determine and plot the DTFT of g[n] = 8[n] — M ,—00 < 1 < 0Q.

3.15 Let X (/%) denote the DTFT of a real sequence x[n].

(a) Show that if x[#n] is even, then it can be computed from X (ef®) using x[n] = %fér X(e/®)coswn dw.

(b) Show that if x[n] is odd, then it can be computed from X(e/®) using x[n] = % fér X(e/®) sinwn do.

3.16 Determine the DTFT of the causal sequence x[n] = Aa” sin(wgn + ¢)pe[n], where A, ¢, wp, and ¢ are real,
and || < 1.

3.17 Determine the DTFT of each of the following sequences:
@il =a"uln—1], el <1, O)xl]=na"unl, |el <1, Exnl=a"un+1], |af <1,
|
(@) xg[n] = napuln +21, lal <1, () xslnl=a"ul-n—11, la|>1, () xgln]= ol |n| < M,
0, otherwise.
3.18 Determine the DTFT of each of the following sequences:
(@) xq[n] = uln]—pln—=51, ®)xpln] =a™ (uln] ~ pln —81), o] < 1, (C)xc[n] = (n4+Da uln), || < 1.

3.19 Determine the DTFT of each of the following finite-length sequences:

@yl ={y =t =N om={y G=r =N @ = {(1)— W s,
) yaln] = N +1—|n|, ;ﬂ}l\;r‘swr;e,s N peliT {cos(ﬂn/ﬂ\’} ;ﬂﬁrii,;e.i N,
3.20 Show that the inverse DTFT of
X(e/?) = - el < 1,

(1 —ae—jwyn’

is given by i i -
n+m—
x[n] = ﬁ "uln].
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3.21 Evaluate the inverse DTFT of each of the following DTFTs:
. ) ejw(l _ gij)
() Xa(el®) =3 72 _ o 8(w+2rmk), (b) Xp(e/¥) = R
— €
H(xe*jw

jawy _ N jowy —
(c) Xo(ed) =1 +22€=0 coswl, (d) Xg(e/®) = m,

lee] < 1.

3.22 Determine the inverse DTFT of each of the following DTFTs: _
(a) Hy(e/®) = sin(dw), (b) Hp(e/?) = cos(dw), (c) He(e/™) = sin(Sw), (d) Hy(e/?®) = cos(5w).

3.23 Determine the inverse DTFT of each of the following DTFTs:
(a) H1(e!®) =1+ 2cosw+3cos2w, (b) Hy(ed®) = (3 +2cosw + 4 cos 2w) cos(w/2)e7@/2,
(c) H3(e/®) = j (3 +4cosw + 2cos2w) sinw, (d) Ha(e/®) = j(4+ 2cosw+ 3 cos 2w) s1n(w/2)e"“’/2

3.24 Prove the following theorems of the discrete-time Fourier transform: (a) Linearity theorem, (b) Time-reversal
theorem, (c) Time-shifting theorem, and (d) Frequency-shifting theorem.

3.25 Determine and plot the DTFT of the cascade of the LTI discrete-time systems with two-sided impulse responses

given by hy[n] = 8[n) — SN and ho[n] = SL928 respectively, where 0 < w| < @y < 1.
y 1 an mh P

3.26 Let X (e/%) denote the DTFT of a real sequence x[n]. Express the inverse DTFT y[n] of Y(el®) = X (/) in
terms of x[n].

3.27 Let X (/%) denote the DTFT of a real sequence x[n]. Define Y(e/®) = % [X(ej“’/z) -+ X(wej“’/z)} . Deter-
mine the inverse DTFT y[n] of Y (e/®).

3.28 Prove Eq. (3.26).
3.29 Prove Eq. (3.33).
3.30 The magnitude function | X (e/®)| of a discrete-time sequence x|[n] is shown in Figure P3.1 for a portion of the

angular frequency axis. Sketch the magnitude function for the frequency range —7 < w < 7. What type of sequence
is x[n]?

.Y s

I

34m 4 4.61 54n

Figure P3.1

3.31 Without computing the DTFT, determine which of the following sequences have real-valued DTFTs and which
have imaginary-valued DTFTs:
_[n, =N<n<N, 5 _ nz, —N<n<N, sin wen
@nlnl= {0 o V320 = { o SN @l = S,

0, for n even, 0. n=0,
(d) x4ln] = { J‘:‘—n for n odd, () zglal= { *—CDS,,M. |n| = 0.
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3.32 Without computing the inverse DTFT, determine which of the following DTFTs have an inverse that is an even
sequence and which have an inverse that is an odd sequence:

@ree ={ b =S e e <o, oslelsr ©¥seie) = {7

-1 <w<(,
—j O<w<m.

3.33 Without computing the inverse DTFT, determine which of the DTFTs of Figure P3.2 has an inverse that is an
even sequence and which has an inverse that is an odd sequence.

H (&) Hy(ed?)

(a) (b)
Figure P3.2

3.34 Let X(e/®) denote the DTFT of a comglex sequence x[n]. Determine the DTFT Y (e/®) of the sequence
y[n] = x[n]@x*[—n] in terms of X (e/?), and show that it is a real-valued function of w.

335 A scquence x[n] has a zero-phase DTFT X (e/®) as sketched in Flgure P3.3. Sketch the DTFT of the sequence
x[nle=d7/3, 3

X(ejw)

-7 -3 0 13 F

Figure P3.3

¢

3.36 Using Parseval’s relation, evaluate the following integrals: (a) fér m%m—mdw, (b) fét mm:). and

o [T 4
@ Jo G Eemar?

3.37 Let X(ej‘”) denote the DTFT of the sequence:
x[r]={12 29 —42 24 —3.2 —-09 44 42 —-08 39},-3<n<6.

[

Evaluate the integral

; 2
dX(el?)

dw

without computing X (e/%).

S,
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3.38 Let X(ej“’) denote the DTFT of a length-9 sequence x[a] given by
xpl={2 3 -1 0 —4 3 1 2 4}, 2<n<6

Evaluate the following functions of X (e/?) without computing the transform itself:

, . . _— fury 12
@ XE), )X, © [T, X do, @ [T, x| do, @ [T, 2] g0,
3.39 Repeat Problem 3.38 for the length-9 sequence
xnl=4 2 -1 5 -3 1 -2 4 2}, -6=<n<2.

3.40 (a) A measure of the time delay of a sequence x[n] is usually given by its center of gravity, defined by

_ ER ]

Co = :
R el

Express Cy in terms of the DTFT X (/%) of x[n].
(b) Determine the center of gravity of the sequence x[n] = o™ u[n].

341 Let G1(e/®) denote the discrete-time Fourier transform of the sequence g [n] shown in Figure P3.4(a). Express
the DTFTs of the remaining sequences in Figure P3.4 in terms of G| (e/®). Do not evaluate G (e/®).

(b)
g4[nl H f 8,ln]
T
01234567 01234567
() (d)
Figure P3.4

3.42 Let y[n] denote the linear convolution of two sequences, 4[n] and x[n]; that is, y[n] = h[n]@x[n]. Show that

oo o0 oC o0 o0 o0
@ Y y[n]=(z h[n]) 3 x[n]), b) Y xln]= LZ y[n])/(z h[n]),

n=—00 n=—00 1=—00
(o8] o0 o0
© > (1)”y[n1=( > (—1)"h[n])( b (1)"x[nl)-
n=—coc I1=—00 N=—=00

3.43 Show that the 80% bandwidth of the discrete-time signal of Eq. (3.14) for & = 0.5 is 0.50817 radians.
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3.44 Letx[n] be a causal and absolutely summable real sequence with a DTFT X (ef®). If Xpe(ed®) and X (e/®)
denote the real and imaginary parts of X (e/®), show that they are related as

B 1 = o W=
Xim (/%) = —— Xrel(e!V) cot dv, (3.124a)
20 Sy
; 1 L ; w—v
X 1olel®) = 2—] Xim(ej")cot( ) dv + x[0]. (3.124b)
T J—n

The above equations are called the discrete Hilbert transform relations.

3.45 Show that the function u[n] = z”, where z is a complex constant, is an eigenfunction of an LTI discrete-time
system. Is v[n] = z" u[n] with z a complex constant also an eigenfunction of an LTI discrete-time system?

3.46 Determine the expression for the frequency response of the LTI discrete-time system of Figure 2.35 in terms of
the frequency responses H; (e/*), 1 < i < 4, of the individual blocks.

3.47 Determine the expression for the frequency response of each of the LTI discrete-time systems of Figure P2.2
(see Problem 2.64), in terms of the frequency responses H;(e/®), 1 <i < 3, of the individual blocks.

3.48 Determine the expression for the frequency response of the LTI discrete-time system of Figure P2.3 (see Prob-
lem 2.65).

3.49 (a) Consider an LTI discrete-time system w1th areal and causal impulse response h[n] and a frequency response
H (e/®). Show that i[n] can be determined umquely from the real part Hye(e/%) of H(e/®). )

(b) The real part of the frequency response of a real and causal LTI discrete-time system is given by Hye(e/?) =
1 +2cosw + 3cos 2w + 4 cos 3w. Determine the impulse response h[n] of the system.

3.50 If the input to each of the following discrete-time systems is x[1] = cos(wen), determine the frequencies present
in their outputs:
(@) yaln] = sin(wn/3x[n], () ypln] =x3[n], (©) yeln] = x[3n].

3.51 Determine a closed-form expression for the frequency response H (¢/®) of the LTI discrete-time system char-
acterized by an impulse response

h[n] = 8[n] — adln — R]. (3.125)
where |¢| < 1. What are the maximum and the minimum values of its magnitude response? How many peaks and
dips of the magnitude response occur in the range 0 < w < 27?7 What are the locations of the peaks and the dips?
Sketch the magnitude and the phase responses for R = 6.
3.52 Determine a closed-form expression for the frequency response G (e/®) of an LTI discrete-time system with an
impulse response given by

zn]_ a,n’ OEHSM_]:
shtl= 0 otherwise,

where |er| < 1. What is the relation of G(e/®) to H(e/®) of Eq. (3.98)7 Scale the impulse response by multiplying
it with a suitable constant so that the dc value of the magnitude response is unity.

3.53 A noncausal LTI FIR discrete-time system is characterized by an impulse response h[n] = a|8[n — 2]+ azd[n—
11+ a3d[n] +a4é8[n + 1]. For what values of the impulse response samples will its frequency response H (e/*) have
a zero phase?

3.54 A causal LTI FIR discrete-time system is characterized by an impulse response h[n] = a18[a] + az8[n — 1] +
a3é[n — 2] + aadln — 3]+ asd[n — 4]. For what values of the impulse response samples will its frequency response
H (e«’ “) have a linear phase?

N
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3.55 AnFIR LTI discrete-time system is described by the difference equation
yinl = ayx[n + k]l +axx[n+k — 11+ apx[n +k = 2]+ ayx[n +k — 3].

where y[n] and x[n] denote, respectively, the output and the input sequences. Determine the expression for its
frequency response H (¢/®). For what values of the constant & will the system have a frequency response H (e/*) that
is a real function of w?

3.56 Consider the cascade of three causal LTI systems: &1[n] = ad[n]-+bs[n—1]+8[n—2]; hyln] = culnl, el < 1;
and h3[n] = d"u[n]. |d| < 1. Determine the frequency response H (e/*) of the overall system. For what values of
the constants a, b, ¢, and d will |H (e/®)| = 1?7

3.57 The input-output relation of a nonlinear discrete-time system in the frequency domain is given by
Y(e/®) = | X (el?) |2 el28X (), (3.126)

where 0 < @ < I, and X (/%) and Y(ej“_’) denote the DTFTs of the input and output sequences. Determine the
expression for its frequency response H(e/®) = Y(e/®)/X (e/®), and show that it has zero phase. The nonlinear
algorithm described by Eq. (3.126) is known as the alpha-rooting method and has been used in image enhancement
[Jai89].

3.58 Determine the expression for the frequency response H (e/®) of a causal IIR LTI discrete-time system charac-
terized by the input—output relation

y[n] = x[n] —ay[n — RI, le| <1,

where y[n] and x[n] denote, respectively, the output and the input sequences. Determine the maximum and the
minimum values of its magnitude response. How many peaks and dips of the magnitude response occur in the range
0 < @ < 27" What are the locations of the peaks and the dips? Sketch the magnitude and the phase responses for
R =5.

3.59 An IIR LTI discrete-time system with input x[n] and output y[n] is described by the difference equation
y[n] +aryln — 1] = box[nl + byx[n — 11,

where the constants ay, by, and by are real. Determine the expression for its frequency response. For what values of
the constants b; will the magnitude response be a constant for all values of &?

3.60 Repeat Problem 3.59 when the constants a1, by, and b) are complex numbers.

v

3.61 Determine the difference equation representation of each of the LTI discrete-time with frequency responses as

given below: ) _ _
(a) Hq(e??) = cosec(w), (b) Hy(e!?) = sec(w), (c) Hele!?) = cot(w), (d) Hy(e!?) = tan(w/2).

3.62 Determine the input-output relation of a factor-of-L up-sampler in the frequency domain.

3.63 Determine the inverse DTFT of G(e/®) = 1/(1 — ae 7Ly || < 1, where L is a positive integer.

3.64 Consider an LTI discrete-time system with an impulse response i[n] = (0.5)" ufn]. Determine the frequency
response H (e/®) of the system and evaluate its value at @ = /5. What is the steady-state output v[n] of the system
for an input x[n] = sin(wn/3)pu[n]?

3.65 An FIR filter of length 3 is defined by a symmetric impulse response; that is, i[0] = &[2]. Let the input to

this filter be a sum of two cosine sequences of angular frequencies 0.3 rad/samples and 0.6 rad/samples, respectively.
Determine the impulse response coefficients so that the filter passes only the low-frequency component of the input,
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3.66 An FIR filter of length 3 is defined by a symmetric impulse response; that is, #[0] = A[2]. Let the input to
this filter be a sum of two cosine sequences of angular frequencies 0.3 radfsamples and 0.6 rad/samples, respectively.
Determine the impulse response coefficients so that the filter passes only the high-frequency component of the input.

3.67 Determine the output response y[#] of an LTI discrete-time system with an impulse response

_sin((n-2)%)

il it — 2

for an input
x[n] = 3sin (5*) + 5cos (2%-’1) .

3.68 AnFIR filter of length 5 is defined by a symmetric impulse response; thatis, h[n] = h[4 —n],0 <n < 4. Let the
input to this filter be a sum of three cosine sequences of angular frequencies: 0.2 rad/samples, 0.5 rad/samples, and 0.8
rad/samples, respectively. Determine the impulse response coefficients so that the filter passes only the midfrequency
component of the input.

3.69 The frchuency response H (e/®) of a length-4 FIR filter with real impulse response has the following specific
values: H(efVy =2, H(e/™/?y =7 j3, and H(¢/™) = 0. Determine its impulse response #[n].

3.70 The frequency response H (ed®) of a length-4 FIR filter with a real and antisymmetric impulse response has the
following specific values: H(e/™) = 8, and H(e/™/?) = -2 + j2. Determine its impulse response i[n].

3.71 (a)Designalength-3 FIR notch filter with a symmetric impulse response k[n]; thatis, h[n] = k[2—n],0 <n < 2,
and with a notch frequency at 0.4z and a 0 dB dc gain.
(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and

phase responses.

3,72 (a) Design a length-4 FIR lowpass filter with a symmetric impulse response i[n]; that is, k[n]'= k[3 —n].0 <
n < 3, satisfying the following magnitude response values: |H(ef '27’)| = 0.8 and |H(ef0'5”)| =(0.5.

(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and
phase responses.

3.73 (a) Design a length-4 FIR highpass filter with an antisymmetric impulse response k[n]; that is, h[n] = —h[3 —
n], 0 < n < 3, satisfying the following magnitude response values: |H(ej0'5”)| =0.2 and JH(ef0'8”)1 =0.7.

(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and
phase responses. .

3.74 (a) Design a length-5 FIR bandpass filter with an antisymmetric impulse response h[z]; that is, i[n] = —h[4 —
n], 0 < n < 4, satistying the following magnitude response values: \H(efo“"’)[ = 0.8 and |H(ejo'8“)| =02

(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and
phase responses.

3.75 Consider the two LTI causal digital filters with impulse responses given by

haln] =0.38[n] —8[n — 1]+ 0.38[n — 2],
hpln] = 0.38[n] + 8(n — 1] +0.38[n — 2].

(a) Sketch the magnitude responses of the two filters and compare their characteristics.
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(b) Let h 4[n] be the impulse response of a causal digital filter with a frequency response H4 (ej"’). Define another
digital filter whose impulse response h¢[n] is given by

helnl = (=1 halnl, for all n.
What is the relation between the frequency response Hc (¢/®) of this new filter and the frequency response
H 4 (e/®) of the parent filter?

3,76 As indicated in Example 2.45, the trapezoidal integration formula can be represented as an IR digital filter
represented by a difference equation given by
yln] = yln — 11+ ${x[n] + x[n — 1),

with y[—1] = 0. Determine the frequency response of the above filter.

3.77 A recursive difference equation representation of the Simpson’s numerical integration formula is given by
[Ham89]

y[n] = yln — 2] + §(x[n] +4x[n — 1]+ x[n — 2]}.
Evaluate the frequency response of the above filter and compare it with that of the trapezoidal method of Problem 6.52.

3.78 The frequency response of an LTI FIR discrete-time system is given by G(ef‘“) =go+grei?+ ggesz‘” +
gze/ 3@ For what relations between the coefficients gg. g1, g2, and g3 will G(&/®) have a constant group delay?

3.79 Determine the expressions for the group delay of each of the LTI systems whose frequency responses are given

below. _ _ )
(a) Ho(e!®)y = a + be /¥, (b) Hp(e!™) =

(d) Hp(e!®) =

(c) He(el®) = 8¥be— 1o < 1,

1
14ce—J@’ I+ce—Jie’

1 :
W’ ‘(.l < 1, [(” < 1.
3.80 Show that the group delay 7 (w) of an LTI discrete-time system characterized by a frequency response H (ef®)

can be expressed as

L d H{el®)
S e

Hiei®) (3.127)

Tp(w) =Re

3.81 Let H (e/®) denote the frequency response of an LTI discrete-time system with an impulse response /&[n] and

let G(e/®) denote the Fourier transform of the sequence nk[n]. Show that the group delay of the LTI system can be

computed using

Hre(e/?) Gre(e/?) + Him (¢/*)Gim (e/®)
|H (ef@)|? L

where Hre (e/%) and Him(e»i“’) denote the real and imaginary parts of H (ed®), respectively, and Grele/®) and

Gim(e/®) denote the real and imaginary parts of G(e/®), respectively.

(3.128)

1g(w) =

3.82 Using Eq. (3.128) determine the group delays of the LTI discrete-time systems with frequency responses as given
below: -
(@) Ho(e/®) = 14046772, (b) Hy(e/®) = (5b—r, (0) He(ed®) = 50557

) . 1+0.6 /@’ T 1403
joy — _ .
(d) Hy(e’™) = G -Toy 1505 e7%) "

3.83 Consider an LTI discrete-time system with an impulse response h[n] = {—0.5)" u[n]. Determine the frequency
response H (e/®) of the system, and evaluate its value at @ = /5. What is the steady-state output y[r] of the system
for an input x[r] = sin(wn/5)uln]?

3.84 An FIR filter of length 3 is defined by a symmetric impulse response, that is, 2[0] = k[2]. Let the input to
this filter be a sum of two cosine sequences of angular frequencies 0.3 rad/samples and 0.7 rad/samples, respectively.
Determine the impulse response coefficients so that the filter passes only the low-frequency component of the input.
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3.12 MartLaB Exercises

M 3.1 Using Program 3 1, determine and plot the real and imaginary parts and the magnitude and phase spectra of
the following DTFT for various values of r and 6:
1

G ij = ; i . 0 5 1.
= 1 — 2r(cos@)e=J® + rle—j2 ==

M 3.2 Using Program 3_1, determine and plot the real and imaginary parts and the magnitude and phase spectra of
the DTETs of the sequences of Problem 3.19 for N = 10.

M 3.3 Using Program 3_1, determine and plot the real and imaginary parts, and the magnitude and phase spectra of
the following DTFTs:
0.2418(1 + 0.139¢ 4% — 0.3519e =20 4.0.139¢ /3¢ 4 ¢=/42)
1+ 0.2386e—J% + 0.8258e—20 + 0.1393¢—/3® 4 0.4153¢— /4@’
0.1397(1 — 0.0911e™7% + 0.0911e™/2¢ — ¢=J3®)
1 + 1.1454¢—J@ + 0.7275¢—i20 +0.1205e /3@

(a) X (/%) =

(b) X(e/*”) =

M 3.4 Using MATLAB, verify the symmetry relations of the DTFT of a complex sequence as listed in Table 3.1.

M 3.5 Using MATLAB, verify the symmetry relations of the DTFT of a real sequence as listed in Table 3.2.

M 3.6 Using MATLAB, verify the following general properties of the DTFT as listed in Table 3.4: (a) linear-
ity, (b) time-shifting, (c) frequency-shifting, (d) differentiation-in-frequency, () convolution, (f) modulation, and
(g) Parseval’s relation. Since all data in MATLAB have to be finite-length vectors, the sequences used to verify the

properties are thus restricted to be of finite length.

M 3.7 Write a MATLAB program to compute the group delay using the expression of Problem 3.80 at a prescribed
set of discrete frequencies.

M 3.8 Write a MATLAB program to simulate the filter designed in Problem 3.65, and verily its filtering operation.

M 3.9 Write a MATLAB program to simulate the filter designed in Problem 3.68, and verify its filtering operation.



