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Figure 4.58: Equivalent representation of a practical S/H circuit.

Note that the frequency response of the discrete-time system is similar in form to that of the zero-order hold
circuit as given in Eq. (4.81) and shown in Figure 4.55(a). Thus, the discrete-time system of Figure 4.58
acts like a narrowband lowpass filter that performs the averaging operation. If the tracking period ¢ is
much smaller compared to the sampling period T, as is usually the case, the effect of the lowpass filter can
be neglected, and the practical S/H circuit can be considered as an ideal sampler.

4.12 Summary

Various issues concerned with the digital processing of continuous-time signals are studied in this chapter.
A discrete-time signal is obtained by uniformly sampling a continuous-time signal. The discrete-time
representation is unique if the sampling frequency is greater than twice the highest frequency contained
in the continuous-time signal, and the latter can be fully recovered from its discrete-time equivalent by
passing it through an ideal analog lowpass reconstruction filter with a cutoff frequency that is half the
sampling frequency. If the sampling frequency is lower than twice the highest frequency contained in
the continuous-time signal, in general, the latter cannot be recovered from its discrete-time version due
to aliasing. In practice, the continuous-time signal is first passed through an analog lowpass anti-aliasing
filter, with the cutoff frequency chosen as half of the sampling frequency whose output is sampled to prevent
aliasing. It is also shown that a bandpass continuous-time signal can be recovered from its discrete-time
equivalent by undersampling, provided the highest frequency is an integer multiple of the bandwidth of
the continuous-time signal and the sampling frequency is greater than twice the bandwidth.

A brief review of the theory behind some popular analog lowpass filter design techniques is included,
and their design using MATLAB is illustrated. Also discussed are the procedures for designing analog
highpass, bandpass, and bandstop filters and their implementations using MATLAB. The specifications of
the analog filters are usually given in terms of the locations of the passband and stopband edge frequencies
and the passband and stopband ripples. Effects of these parameters on the performances of the anti-aliasing
and reconstruction filters are examined,

Other interface devices involved in the digital processing of continuous-time signals are the sample-and-
hold circuit, comparator, analog-to-digital converter, and digital-to-analog converter. A brief introduction
to these devices is included for completeness.

413 Problems

4.1 Prove the Poisson’s sum formula of Eq. (4.7).

4.2 Show that if the spectrum G, (j2) of g, () (band-limited to £2,,) also contained an impulse at §2,,, the sampling
rate Q7 must be greater than 2$2,, to recover fully g, (+) from the sampled version.

4.3 The Nyquist frequency of a continuous-time signal g, (¢) is §2,,. Determine the Nyquist frequency of each of the
following continuous-time signals derived from gq (¢) :
(@) y1(1) = ga(Nga(t),  (b) y2(r) = ga(t/3),  (c) y3(t) = ga(31), (d) y4(1) = f_oooo galt — T)gu(r)dT,
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4.4 A finite-energy continuous-time signal g, (¢) is sampled at a rate satisfying the Nyquist condition of Eq. (4.11),
generating a discrete-time sequence g[n]. Develop the relation between the total energy £ (1) Of the continuous-time
signal g4 (1) and the total energy €[y of the discrete-time signal g[n].

4.5 A 2.5 s long segment of a continuous-time signal is uniformly sampled without aliasing and generating a finite-
length sequence containing 5001 samples. What is the highest frequency component that could be present in the
continuous-time signal?

4.6 A continuous-time signal x, (¢) is composed of a linear combination of sinusoidal signals of frequencies 300 Hz,
500 Hz, 1.2 kHz, 2.15 kHz, and 3.5 kHz. The signal x,(¢) is sampled at a 2.0-kHz rate, and the sampled sequence is
passed through an ideal lowpass filter with a cutoff frequency of 900 Hz, generating a continuous-time signal yq (2).
What are the frequency components present in the reconstructed signal y, (1)?

4.7 A continuous-time signal x4 (1) is composed of a linear combination of sinusoidal signals of frequencies F; Hz,
F3 Hz, F3 Hz, and Fy Hz. The signal x4 (¢) is sampled at an 10-kHz rate, and the sampled sequence is then passed
through an ideal lowpass filter with a cutoff frequency of 4 kHz, generating a continuous-time signal v, (¢) composed
of three sinusoidal signals of frequencies 350 Hz, 575 Hz, and 815 Hz, respectively. What are the possible values of
F1, F2, F3, and Fy? Is your answer unique? If not, indicate another set of possible values of these frequencies.

4.8 The continuous-time signal x,(r) = 4sin(2071) — 5cos(247r) + 3sin(12071) + 2 cos(1767r) is sampled at a
50 Hz rate, generating the sequence x[n]. Determine the exact expression of x[u].

4.9 The left and right channels of an analog stereo audio signal are sampled at a 45-kHz rate, with each channel then
being converted into a digital bit stream using a 12-bit A/D converter. Determine the combined bit rate of the two
channels after sampling and digitization.

4.10 Show that the impulse response /(1) of an ideal lowpass filter as derived in Eq. (4.19) takes the value fif (nT) =
§[n] for all n if the cutoff frequency Q. = Qy /2, where 27 is the sampling frequency.

4.11 Consider the system of Figure 4.2, where the input continuous-time signal x,(¢) has a band-limited spectrum
Xu(j§2), as sketched in Figure P4.1(a), and is being sampled at the Nyquist rate. The discrete-time processor is
an ideal lowpass filter with a frequency response H(e/*), as shown in Figure P4.1(b), and has a cutoff frequency
we = 82, T/3, where T is the sampling period. Sketch as accurately as possible the spectrum ¥, () of the output
continuous-time signal v, (1).

Xa(i€) H(e/®)

—8y, 0 le Q. “w: 0 W

Figure P4.1
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4.12 A continuous-time signal x, (1) has a band-limited spectrum Xgq (j$2), as indicated in Figure P4.2. Determine
the smallest sampling frequency Fr that can be employed to sample ¥, (f) so that it can be fully recovered from its
sampled version x[#] for each of the following sets of values of the bandedges 2, and 3. Sketch the Fourier transform
of the sampled version x[n] obtained by sampling xXa (1) at the smallest sampling rate Fy and the frequency response
of the ideal reconstruction filter needed to fully recover xg(t) for each case.

(@) Q) = 1007, @y = 150m;  (b) @ = 1607, 22 =250m; (¢} &1 = 1107, Q5 = 1807.

X, ()

Figure P4.2
4.13 For each set of desired peak passband deviation ap and the minimum stopband attenuation o of an analog
lowpass filter given below, determine the corresponding passband and stopband ripples, 8 and & :

(®a, =021dB, oy = 52dB; (b)ap =0.03dB, o5 = 69dB; (c)up =0.33dB, oy = 57dB.

4.14 Show that the analog transfer function

a
Hy($)= —, a>0, (4.92)
5s+a
has a lowpass magnitude response with a monotonically decreasing magnitude response with |Hy(j0)] = 1 and

|Ha(joo)| = 0. Determine the 3-dB cutoff frequency $2c at which the gain response is 3 dB below the maximum
value of 0dB at 2 = 0.

4.15 Show that the analog transfer function

s
Gals) = s a>0, (4.93)
s+a
has a highpass magnitude response with a monotonically increasing magnitude response with |G4(j®)] = 0 and
|Gu(joo} = 1. Determine the 3-dB cutoff frequency 2 at which the gain response is 3 dB below the maximum

value of 0 dB at 2 = oo.

4.16 The lowpass transfer function Hy (s) of Eq. (4.92) and the highpass transfer function G (s) of Eq. (4.93) can be
expressed in the form

Ha(s) = HAo) = A1)} Gals) = 5A0() + A1),

where Ag(s) and A (s) are stable analog allpass transfer functions. Determine Ag(s) and Aj(s).

4.17 Show that the analog transfer function
bs

—. b>0 (4.94)
s+ bs + Q.,?,'

Hu(s) =

has a bandpass magnitude response with [Hq(jO) = |Ha(joo) =0 and | Ha(j )| = 1. Determine the frequencies
€1 and §7 at which the gain is 3 dB below the maximum value of 0 dB at Q,. Show that €212 = S'z;, The difference
€27 — 2, is called the 3-dB bandwidth of the bandpass transfer function. Show that b = 21 — Q4.
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4,18 Show that the analog transfer function

25 Qf;

) 3
5=+ bs -+ Q5

Gy(s) = b >0, (4.95)

has a bandstop magnitude response with |G, (jO)| = |G4(joo)| = 1 and |G4(jR2)| = 0. Since the magnitude is
exactly zero at §2,, it is called the notch frequency, and G,4(s) is often called the notch transfer function. Determine
the frequencies | and 25 at which the gain is 3 dB below the maximum value of 0 dB at £ = 0 and 2 = co. Show
that 2127 = Q?-, The difference £ — € is called the 3-dB notch bandwidth of the bandpass transfer function. Show
that b = Q7 — Q.

4.19 The bandpass transfer function Hy (s) of Eq. (4.94) and the bandstop transfer function G, (s) of Eq. (4.95) can
be expressed in the form

Ha(s) = H{Ag(s) — A1), Gals) = $(Apts) + A(s)),

where Ag(s) and Aj(s) are stable analog allpass transfer functions. Determine Ag(s) and A (s).

4.20 An analog real-coefficient allpass transfer function A(s) is defined by IA(_fQH2 = 1, where A(j$2) is the
magnitude function of the transfer function.

{(a) Show that an analog real-coefficient causal and stable allpass transfer function A(s) is given by

N
A(s):l_[(s_k'), (4.96)

where Re{A;} < 0.

(b) Show that an analog real-coefficient causal and stable allpass transfer function A(s) satisfies the following

property:
<1 forRe(s) >0,

|A(s)]| { =1 forRe(s) =0,
> 1 forRe(s) < 0.

4.21 Show that the first 2N — 1 derivatives of the squared-magnitude response |Hq(j )| of a Butterworth filter of
order N as given by Eqg. (4.33) are equal to zero at & = 0.

4.22 Using Eq. (4.35), determine the lowest order of a lowpass Butterworth filter with a 0.25-dB cutoff frequency at
1.5 kHz and & minimum attenuation of 25 dB at 6 kHz. Verify your result using but tord.

4.23 Using Eq. (4.37), determine the pole locations and the coefficients of a sixth-order Butterworth polynomial with
unity 3-dB cutoff frequency.

4.24 Show that the Chebyshev polynomial Ty () defined in Eq. (4.40) satisfies the recurrence relation given in
Eq. (4.41) with Tp(R2) = 1, and T7(2) = 2.

4.25 Using Eq.(4.43), determine the lowest order of a lowpass Type 1 Chebyshev filter with a 0.25-dB cutoff frequency
at 1.5 kHz and a minimum attenuation of 25 dB at 6 kHz. Verify your result using cheblord.

4.26 Using Eq. (4.54) determine the lowest order of a lowpass elliptic filter with a 0.25-dB cutoff frequency at 1.5 kHz
and a minimum attenuation of 25 dB at 6 kiHz. Verify your result using ellipord.

4.27 Determine the Bessel polynomials By (s) for the following values of N: (a) N =4 and (b) N = 3.
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4.28 The transfer function of a third-order analog Butterworth lowpass filter with a passband edge at 0.24 Hz and a
passband ripple of 0.5 dB is given by
Hy p(s) 10
5= .
LPY) = 3430052 +9.28355 + 10

Determine the transfer function Hp p(s) of an analog highpass filter with a passband edge at 3 Hz and a passband
ripple of 0.5 dB by applying the spectral transformation of Eq. (4.62).

4.29 The transfer function of a third-order analog Butterworth highpass filter with a passband edge at 0.9 Hz and a
passband ripple of 1 dB is given by

53

H | §) = .
HP() = 37795837 1 40.087s + 100

Determine the transfer function Hy p(s) of an analog lowpass filter with a passband edge at 3 Hz and a passband ripple
of | dB by applying the spectral transformation of Eq. (4.62).

430 The transfer function of a second-order analog elliptic lowpass filter with a passband edge at 0.25 Hz and a
passband ripple of 0.5 dB is given by

0.01(s + 367.93)
52 +2.2695 + 3.895

Determine the transfer function Hp p (s) of an analog bandpass filter with a center frequency at 3 Hz and a bandwidth
of 0.5 Hz by applying the spectral transformation of Eq. (4.64).

Hyp(s) =

4.31 A Butterworth analog highpass filter is to be designed with the following specifications: Fp = 65 kHz,
Fy = 1.5kHz, ap = 0.5 dB, and oy = 40 dB. What are the bandedges and the order of the corresponding analog
lowpass filter? What is the order of the highpass filter? Verify your results using the function buttord.

4.32 An elliptic analog bandpass filter is to be designed with the following specifications: passband edges at 20 kHz
and 45 kHz, stopband edges at 15 kHz and 50 kHz, peak passband ripple of 0.25 dB, and minimum stopband attenuation
of 50 dB. What are the bandedges and the order of the corresponding analog lowpass filter? What is the order of the
bandpass filter? Verify your results using the function ellipord.

4.33 A Type 1 Chebyshev analog bandstop filter is to be designed with the following specifications: passband edges at
10 MHz and 70 MHz, stopband edges at 20 MHz and 45 MHz, peak passband ripple of 0.5 dB, and minimum stopband
attenuation of 30 dB. What are the bandedges and the order of the corresponding analog lowpass filter? What is the
order of the bandstop filter? Verify your results using the function cheblord.

4,34 Verify Table 4.1.

4.35 Derive Eq. (4.76).

4.36 Derive Eq. (4.77).

4.37 An alternative to the zero-order hold circuit of Figure 4.54 used for signal reconstruction at the output of a D/A

converter is the first-order hold circuit, which approximates v, (1) according to the following relation:

yp@T)—ypnT — D)
T

As indicated by the above equation, the first-order hold circuit approximates y, (¢) by straight-line segments. The slope

of the segment between t = nT and t = (n + 1T is determined from the sample values yp(nT) and yp(nT — T).

Delermine the impulse response /2 ¢ (1) and the frequency response H ¢ (j€2) of the first-order hold circuit, and compare

its performance with that of the zero-order hold circuit.

yf(r) =ypnT)+ (r—nT), nT <t<@m+DT.
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4,38 A more improved signal reconstruction at the output of a D/A converter is provided by a linear interpolation
circuit, which approximates v, (r) by connecting successive sample points of yp (r) with straight-line segments. The
input-output relation of this circuit is given by

ypnT) — yp(nT —T)
T

yriy=ypnT —=T)+ (t—nT), nT <t<@+DT.
Determine the impulse response /i ¢(r) and the frequency response H 7 (j<2) of the linear interpolation circuit, and
compare its performance with that of the first-order hold circuit.

4.14 MarLas Exercises

M 4.1 Determine the transfer function of a lowpass Butterworth analog filter with specifications as given in Prob-
lem 4.22, using Program 4 2. Plot the gain response and verify that the filter designed meets the given specifications.
Show all steps.

M 4.2 Determine the transfer function of a lowpass Type 1 Chebyshev analog filter with specifications as given
in Problem 4.25, using Program 4 3. Plot the gain response and verify that the filter designed meets the given
specifications. Show all steps.

M 4.3 Modify Program 4 3 to design lowpass Type 2 Chebyshev analog filters. Using this program, determine the
transfer function of a lowpass Type 2 Chebyshev analog filter with specifications as given in Problem 4.25. Plot the
gain response and verify that the filter designed meets the given specifications. Show all steps.

M 4.4 Determine the transfer function of a lowpass elliptic analog filter with specifications as given in Problem 4.26,
using Program 4 4. Plot the gain response and verify that the filter designed meets the given specifications. Show all
steps.

M 4.5 Design, using MATLAB, a Butterworth analog highpass filter with specifications given in Problem 4.31. Show
the transfer functions of the prototype analog lowpass and the highpass filters. Plot their gain responses and verify
that both filters meet their respective specifications. Show all steps.

M 4.6 Design an elliptic analog bandpass filter with specifications given in Problem 4.32. Show the transfer functions
of the prototype analog lowpass and the bandpass filters. Plot their gain responses and verify that both filters meet
their respective specifications. Show all steps.

M 4.7 Design a Type 1 analog bandstop filter with specifications given in Problem 4.33. Show the transfer functions
of the prototype analog lowpass and the bandstop filters. Plot their gain responses and verify that both filters meet

their respective specifications. Show all steps.

M 4.8 Write a MATLAB program to verify the plots of Figure 4.56.



