5.15 Problems

5.1 The periodic convolution of two periodic sequences, $\bar{x}[n]$ and $\tilde{h}[n]$, of period N each, is defined by

$$\tilde{y}[n] = \sum_{r=0}^{N-1} \tilde{x}[r]\tilde{h}[n-r]. \tag{5.184}$$

Show that $\bar{y}[n]$ is also a periodic sequence of period N.

5.2 Determine the periodic sequence $\tilde{y}[n]$ obtained by a periodic convolution of each pair of periodic sequences of period 5 given below:

(a)
$$\tilde{x}[n] = \{1 \quad 2 \quad -2 \quad -1 \quad 3\}, \quad \tilde{h}[n] = \{2 \quad 0 \quad 1 \quad 3 \quad -4\}, \quad 0 \le n \le 4,$$

(b) $\tilde{x}[n] = \{-1 \quad 5 \quad 3 \quad 0 \quad 3\}, \quad \tilde{h}[n] = \{-2 \quad 0 \quad 5 \quad 3 \quad -2\}, \quad 0 \le n < 4.$

5.3 Let $\tilde{x}[n]$ be a periodic sequence with period N, i.e., $\tilde{x}[n] = \tilde{x}[n+\ell N]$, where ℓ is any integer. The sequence $\tilde{x}[n]$ can be represented by a Fourier series given by a weighted sum of periodic complex exponential sequences $\tilde{\Psi}_k[n] = e^{j2\pi kn/N}$. Show that, unlike the Fourier series representation of a periodic continuous-time signal, the Fourier series representation of a periodic discrete-time sequence requires only N of the periodic complex exponential sequences $\tilde{\Psi}_k[n]$, $k=0,1,\ldots,N-1$, and is of the form

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j2\pi kn/N}, \qquad (5.185a)$$

where the Fourier coefficients $\tilde{X}[k]$ are given by

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j2\pi kn/N}.$$
(5.185b)

Show that $\bar{X}[k]$ is also a periodic sequence in k with a period N. The set of equations in Eqs. (5.185a) and (5.185b) represent the discrete Fourier series pair.

- 5.4 Determine the discrete Fourier series coefficients, defined in Eq. (5.185b), of the following periodic sequences: (a) $\tilde{x}_1[n] = \cos(\pi n/4)$, (b) $\tilde{x}_2[n] = \sin(\pi n/3) + 3\cos(\pi n/4)$.
- 5.5 Show, using Eqs. (5.185a) and (5.185b), that the periodic impulse train $\tilde{p}[n] = \sum_{r=-\infty}^{\infty} \delta[n+rN]$ can be expressed in the form $\tilde{p}[n] = \frac{1}{N} \sum_{\ell=0}^{N-1} e^{j2\pi\ell n/N}$.
- **5.6** Let x[n] be an aperiodic sequence with a DTFT $X(e^{j\omega})$. Define

$$\bar{X}[k] = X(e^{j\omega}) \left|_{\omega = 2\pi k/N} = X(e^{j2\pi k/N}), \quad -\infty < k < \infty \; . \right.$$

Show that $\tilde{X}[k]$ is a periodic sequence in k with a period N. Let $\tilde{X}[k]$ be the discrete Fourier series coefficients, defined in Eq. (5.185b), of the periodic sequence $\tilde{x}[n]$. Show, using Eqs. (5.185a) and (5.185b), that

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n+rN].$$

5.7 Let $\bar{x}[n]$ and $\tilde{y}[n]$ be two periodic sequences with period N. Denote their discrete Fourier series coefficients, defined in Eq. (5.185b), as $\tilde{X}[k]$ and $\tilde{Y}[k]$, respectively.

(a) Let $\bar{g}[n] = \bar{x}[n]\bar{y}[n]$ with $\tilde{G}[k]$ denoting its discrete Fourier series coefficients. Show, using Eqs. (5.185a) and (5.185b), that $\tilde{G}[k]$ can be expressed in terms of $\bar{X}[k]$ and $\bar{Y}[k]$ as

$$\tilde{G}[k] = \frac{1}{N} \sum_{\ell=0}^{N-1} \tilde{X}[\ell] \tilde{Y}[k-\ell].$$
 (5.186)

(b) Let $\tilde{H}[k] = \tilde{X}[k]\tilde{Y}[k]$ denote the discrete Fourier series coefficients of a periodic sequence $\tilde{h}[n]$. Show, using Eqs. (5.185a) and (5.185b), that $\tilde{h}[n]$ can be expressed in terms of $\tilde{x}[n]$ and $\tilde{y}[n]$ as

$$\tilde{h}[n] = \sum_{r=0}^{N-1} \tilde{x}[r]\tilde{y}[n-r]. \tag{5.187}$$

- 5.8 Determine the *N*-point DFTs of the following length-*N* sequences defined for $0 \le n \le N-1$:

 (a) $x_a[n] = \sin(2\pi n/N)$, (b) $x_b[n] = \cos^2(2\pi n/N)$, (c) $x_c[n] = \cos^3(2\pi n/N)$.
- 5.9 Determine the *N*-point DFTs of the following length-*N* sequences defined for $0 \le n \le N-1$:

 (a) $y_a[n] = \alpha^n$, (b) $y_b[n] = \begin{cases} 2, & \text{for } n \text{ even,} \\ -3, & \text{for } n \text{ odd.} \end{cases}$
- 5.10 Determine the N-point DFT X[k] of the N-point sequence $x[n] = \cos(\omega_0 n)$, $0 \le n \le N-1$, for $\omega_0 \ne 2\pi r/N$, 0 < r < N-1.
 - **5.11** Consider a length-N sequence x[n], $0 \le n \le N-1$, with N even. Define 2 subsequences of length- $\frac{N}{2}$ each: $x_0[n] = x[2n]$ and $x_1[n] = x[2n+1]$, $0 \le n \le \frac{N}{2}$. Let X[k], $0 \le k \le N-1$, denote the N-point DFT of x[n], and $X_0[k]$ and $X_1[k]$, $0 \le k \le \frac{N}{2}-1$, denote the $\frac{N}{2}$ -point DFTs of $x_0[n]$ and $x_1[n]$, respectively. Express X[k] as a function of $X_0[k]$ and $X_1[k]$.
 - **5.12** Consider a length-N sequence x[n], $0 \le n \le N-1$, with N even. Define two length- $\frac{N}{2}$ sequences given by

$$x_0[n] = \left(x[n] + x[\tfrac{N}{2} + n]\right), \qquad x_1[n] = \left(x[n] - x[\tfrac{N}{2} + n]\right)W_N^n, \qquad 0 \le n \le \tfrac{N}{2} - 1.$$

If $X_0[k]$ and $X_1[k]$, $0 \le k \le \frac{N}{2} - 1$, denote the $\frac{N}{2}$ -point DFTs of $x_0[n]$ and $x_1[n]$, respectively, determine the N-point DFT X[k], $0 \le k \le N - 1$, of x[n] from these two $\frac{N}{2}$ -point DFTs.

5.13 Let X[k] denote the N-point DFT of a length-N sequence x[n], with N even. Define two length- $\frac{N}{2}$ sequences given by

 $g[n] = \frac{1}{2}(x[2n] + x[2n+1]), \quad h[n] = \frac{1}{2}(x[2n] - x[2n+1]), \quad 0 \le n \le \frac{N}{2} - 1.$

If G[k] and H[k], $0 \le k \le \frac{N}{2} - 1$, denote $\frac{N}{2}$ -point DFTs of g[n] and h[n], respectively, determine the N-point DFT X[k] from these two $\frac{N}{2}$ -point DFTs.

5.14 Let X[k], $0 \le k \le N - 1$, denote the *N*-point DFT of a length-*N* sequence x[n], with *N* even. Define two length- $\frac{N}{2}$ sequences given by

$$g[n] = a_1 x[2n] + a_2 x[2n+1], \quad h[n] = a_3 x[2n] + a_4 x[2n+1], \quad 0 \le n \le \tfrac{N}{2} - 1,$$

where $a_1a_4 \neq a_2a_3$. If G[k] and H[k], $0 \leq k \leq \frac{N}{2} - 1$, denote $\frac{N}{2}$ -point DFTs of g[n] and h[n], respectively, determine the N-point DFT X[k] from these two $\frac{N}{2}$ -point DFTs.

5.15 Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$. Determine the 2N-point DFT of each of the following length-2N sequences:

(a)
$$g[n] = \begin{cases} x[n], & 0 \le n \le N-1, \\ 0, & N \le n \le 2N-1, \end{cases}$$
 (b) $h[n] = \begin{cases} 0, & 0 \le n \le N-1, \\ x[n-N], & N \le n \le 2N-1. \end{cases}$

- **5.16** Let G[k] and H[k], $0 \le k \le 2N 1$, denote, respectively, the 2N-point DFTs of the length-2N sequences g[n] and h[n] of Problem 5.15. Define a new length-2N sequence given by y[n] = g[n] + h[n], with a 2N-point DFT Y[k], $0 \le k \le 2N 1$. Develop the relation between Y[k], G[k], H[k], and X[k].
- 5.17 Let Y[k] denote the MN-point DFT of a length-N sequence x[n] appended with (M-1)N zeros. Show that the N-point DFT X[k] can be simply obtained from Y[k] as follows:

$$X[k] = Y[kM], \qquad 0 \le k \le N - 1.$$

5.18 Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$. Assume N is odd. Let R = LN, where L is a positive integer. Define an R-point DFT Y[k], $0 \le k \le R-1$, given by

$$Y[k] = \begin{cases} LX[k], & 0 \le k \le \frac{N-1}{2}, \\ LX[k-R+N], & R - \frac{N-1}{2} \le k \le R-1, \\ 0, & \text{otherwise.} \end{cases}$$

Determine the length-R IDFT y[n], $0 \le n \le R - 1$, of Y[k] as a function of x[n].

- **5.19** Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - (a) If x[n] is a symmetric sequence satisfying the condition $x[n] = x[(N-1-n)_N]$, show that X[N/2] = 0 for N even.
 - (b) If x[n] is a antisymmetric sequence satisfying the condition $x[n] = -x[(N-1-n)_N]$, show that X[0] = 0.
 - (c) If x[n] is a sequence satisfying the condition $x[n] = -x[\langle n+M\rangle_N]$ with N=2M, show that $X[2\ell]=0$ for $\ell=0,1,\ldots,M-1$.
- **5.20** Let x[n], $0 \le n \le N-1$, be an even-length sequence with an N-point DFT X[k], $0 \le k \le N-1$. If X[2m] = 0 for $0 \le m \le \frac{N}{2} 1$, show that $x[n] = -x[\langle n + \frac{N}{2} \rangle_N]$.
- 5.21 Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$. Determine the N-point DFTs of the following length-N sequences in terms of X[k]:
 - (a) $w[n] = \alpha x[\langle n m_1 \rangle_N] + \beta x[\langle n m_2 \rangle_N]$, where m_1 and m_2 are positive integers less than N,
 - (b) $g[n] = \begin{cases} x[n], & \text{for } n \text{ even,} \\ 0, & \text{for } n \text{ odd,} \end{cases}$
 - (c) $y[n] = x[n] \otimes x[n]$.
- 5.22 Let x[n], $0 \le n \le N-1$, be an even-length sequence with an N-point DFT X[k], $0 \le k \le N-1$. Determine the N-point DFTs of the following length-N sequences in terms of X[k]:

(a)
$$u[n] = x[n] - x[(n - \frac{N}{2})_N]$$
, (b) $v[n] = x[n] + x[(n - \frac{N}{2})_N]$, (c) $y[n] = (-1)^n x[n]$.

- 5.23 Let x[n], $0 \le n \le N 1$, be a length-N sequence with an N-point DFT X[k], $0 \le k \le N 1$. Determine the N-point inverse DFTs of the following length-N DFTs in terms of x[n]:
 - (a) $W[k] = \alpha X[\langle k m_1 \rangle_N] + \beta X[\langle k m_2 \rangle_N]$, where m_1 and m_2 are positive integers less than N,
 - (b) $G[k] = \begin{cases} X[k], & \text{for } k \text{ even,} \\ 0, & \text{for } k \text{ odd,} \end{cases}$
 - (c) $Y[k] = X[k] \otimes X[k]$.

- **5.24** Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - (a) Show that if N is even and if $x[n] = -x[(n + \frac{N}{2})_N]$ for all n, then X[k] = 0 for k even.
 - (b) Show that if N is an integer multiple of 4 and if $x[n] = -x[\langle n + \frac{N}{4} \rangle_N]$ for all n, then X[k] = 0 for $k = 4\ell$, $0 \le \ell \le \frac{N}{4} 1$.
- **5.25** Let x[n], $0 \le n \le N-1$, be a length-N real sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - (a) Show that $X[\langle N-k\rangle_N] = X^*[k]$.
 - (b) Show that X[0] is real.
 - (c) If N is even, show that X[N/2] is real.
- **5.26** Let x[n] be a length-N complex sequence with an N-point DFT X[k]. Determine the N-point DFTs of the following length-N sequences in terms of X[k]:
 - (a) $x^*[(-n)_N]$, (b) $x_{re}[n]$, (c) $jx_{im}[n]$, (d) $x_{cs}[n]$, (e) $x_{ca}[n]$.
- 5.27 Let x[n] be a length-N real sequence with an N-point DFT X[k]. Prove the following symmetry properties of X[k]:
 - (a) $X[k] = X^*[\langle -k \rangle_N]$, (b) $X_{re}[k] = X_{re}[\langle -k \rangle_N]$, (c) $X_{im}[k] = -X_{im}[\langle -k \rangle_N]$, (d) $|X[k]| = |X[\langle -k \rangle_N]$,
 - (e) $\arg X[k] = -\arg X[\langle -k \rangle_N]$.
- 5.28 Without computing the DFT, determine which one of the following length-9 sequences defined for $0 \le n \le 8$ has a real-valued 9-point DFT and which one has an imaginary-valued 9-point DFT.
 - (a) $\{x_1[n]\} = \{4 \quad 3 \quad -5 \quad 1 \quad -2 \quad -2 \quad 1 \quad -5 \quad 3\}$
 - (b) $\{x_2[n]\} = \{0 \quad 5 \quad 1 \quad 4 \quad -3 \quad 3 \quad -4 \quad -1 \quad -5\},$
 - (c) $\{x_3[n]\} = \{0 \quad -5 \quad 2 \quad 4 \quad -3 \cdot 3 \quad -4 \quad -1 \quad -5\},$
 - (d) $\{x_4[n]\}=\{-5 \quad 5 \quad -2 \quad 2 \quad 4 \quad 4 \quad 2 \quad -2 \quad 5\}$
- **5.29** Let G[k] and H[k], $0 \le k \le 7$, denote the 8-point DFTs of two length-8 sequences, g[n] and h[n], $0 \le n \le 7$, respectively.
 - (a) If $G[k] = \{2.6 + j4.1 \quad 3 j2.7 \quad -4.2 + j1.4 \quad 3.5 j2.6 \quad 0.5 \quad 1.3 + j4.4 \quad 2.4 j1.6 \quad -3 + j1.6\}$ and $h[n] = g[(n-5)_8]$, determine H[k] without forming h[n] and then computing its DFT.
 - (b) If $g[n] = \{-0.1 j0.7 \ 1.3 + j \ 2 + j0.7 \ 1.1 + j2.2 \ -0.8 + j0.2 \ 3.4 j0.1 \ -1.2 + j3.1 \ j1.5\}$ and $H[k] = G[\langle k+3 \rangle_8]$, determine h[n] without computing the DFT G[k], forming H[k], and then finding its inverse DFT.
- **5.30** Prove the following general properties of the DFT listed in Table 5.3: (a) linearity, (b) circular time-shifting, (c) circular frequency-shifting, (d) duality, and (e) *N*-point circular convolution.
- 5.31 Prove Eq. (5.116).
- **5.32** Consider two length-N real-valued sequences x[n] and y[n] defined for $0 \le n \le N-1$ with N-point DFTs X[k] and Y[k], $0 \le k \le N-1$, respectively. The *circular correlation* of x[n] and y[n] is given by

$$r_{xy}[\ell] = \sum_{n=0}^{N-1} x[n]y[\langle \ell + n \rangle_N], \ 0 \le \ell \le N - 1.$$
 (5.188)

Express the DFT of $r_{xy}[\ell]$ in terms X[k] and Y[k].

5.33 Let x[n], $0 \le n \le N-1$, be a length-N sequence with an MN-point DFT X[k], $0 \le k \le MN-1$. Define

$$y[n] = x[\langle n \rangle_N], \qquad 0 \le n \le MN - 1.$$

How would you compute the MN-point DFT Y[k] of y[n] knowing only X[k]?

5.34 Consider the length-10 sequence, defined for $0 \le n \le 9$,

$$\{x[n]\} = \{-3 \quad 5 \quad 45 \quad -15 \quad -9 \quad -19 \quad -8 \quad 21 \quad -10 \quad 23\},$$

with a 10-point DFT given by X[k], $0 \le k \le 9$. Evaluate the following functions of X[k] without computing the DFT:

(a)
$$X[0]$$
, (b) $X[5]$, (c) $\sum_{k=0}^{9} X[k]$, (d) $\sum_{k=0}^{9} e^{-j2\pi k/5} X[k]$, (e) $\sum_{k=0}^{9} |X[k]|^2$.

5.35 Let X[k], $0 \le k \le 11$, be a 12-point DFT of a length-12 real sequence x[n] with first 7 samples of X[k] given by

$$X[k] = \{11 \quad 8-j2 \quad 1-j12 \quad 6+j3 \quad -3+j2 \quad 2+j \quad 15\}, \ 0 \le k \le 6.$$

Determine the remaining samples of X[k]. Evaluate the following functions of x[n] without computing the IDFT of X[k]:

(a)
$$x[0]$$
, (b) $x[6]$, (c) $\sum_{n=0}^{11} x[n]$, (d) $\sum_{n=0}^{11} e^{j2\pi n/3} x[n]$, (e) $\sum_{n=0}^{11} |x[n]|^2$.

5.36 Let g[n] and h[n] be two finite-length sequences of length 7 each. If $y_L[n]$ and $y_C[n]$ denote the linear and 7-point circular convolutions of g[n] and h[n], respectively, express $y_C[n]$ in terms of $y_L[n]$.

5.37 The even samples of the 9-point DFT of a length-9 real sequence are given by X[0] = -5.7, X[2] = 1.2 - j4.1, X[4] = -3.5 + j5.3, X[6] = 8.6 - j9.6, and X[8] = -7.7 - j3.2. Determine the missing odd samples of the DFT.

5.38 The following 5 samples of the 9-point DFT X[k] of a real length-9 sequence are given: X[0] = 11, X[2] = 1.2 - j2.3, X[3] = -7.2 - j4.1, X[5] = -3.1 + j8.2, and X[8] = 4.5 + j1.6. Determine the remaining 4 samples.

5.39 The following 7 samples of a length-12 real sequence x[n] with a real-valued 12-point DFT X[k] are given by x[0] = 3.8, x[2] = 0.7, x[3] = -3.25, x[5] = 4.1, x[6] = 2.87, x[8] = 9.3, and x[11] = -2. Find the remaining 5 samples of x[n].

5.40 The first 7 samples of a length-12 real sequence x[n] with an imaginary-valued 12-point DFT X[k] are given by x[0] = 0, x[1] = 0.7, x[2] = -3.25, x[3] = 4.1, x[4] = 2.87, x[5] = -9.3, and x[6] = 0. Find the remaining 5 samples of x[n].

5.41 A 174-point DFT X[k] of a real-valued sequence x[n] has the following DFT samples: X[0] = 11, X[9] = -3.4 + j5.9, $X[k_1] = 7.1 + j2.4$, X[51] = 5 - j1.6, $X[k_2] = 8.7 + j4.9$, X[87] = 4.5, X[113] = 8.7 - j4.9, $X[k_3] = 5 + j1.6$, X[162] = 7.1 - j2.4, and $X[k_4] = -3.4 - j5.9$. Remaining DFT samples are assumed to be of zero value.

- (a) Determine the values of the indices k_1, k_2, k_3 , and k_4 .
- (b) What is the dc value of $\{x[n]\}$?
- (c) Determine the expression for $\{x[n]\}$ without computing the IDFT.
- (d) What is the energy of $\{x[n]\}$?

5.42 A 126-point DFT X[k] of a real-valued sequence x[n] has the following DFT samples: X[0] = 12.8 + $j\alpha$, X[13] = -3.7 + j2.2, $X[k_1] = 9.1 - j5.4$, $X[k_2] = 6.3 + j2.3$, X[51] = -j1.7, $X[63] = 13 + j\beta$, $X[k_3] = 13 + j\beta$ $\gamma + j1.7$, $X[79] = 6.3 + j\delta$, $X[108] = \epsilon + j5.4$, and $X[k_4] = -3.7 - j2.2$. Remaining DFT samples are assumed to be of zero value.

- (a) Determine the values of the indices k_1 , k_2 , k_3 , and k_4 .
- (b) Determine the values of α , β , δ , and ϵ .
- (c) What is the dc value of $\{x[n]\}$?
- (d) Determine the expression for $\{x[n]\}$ without computing the IDFT.
- (e) What is the energy of $\{x[n]\}$?

5.43 A length-9 sequence is given by $\{x[n]\}=\{3, 5, 1, 4, -3, 5, -2, -2, 4\}, 0 \le n \le 8$, with an 9-point DFT given by X[k], $0 \le k \le 8$. Without computing the IDFT, determine the sequence y[n] whose 9-point DFT is given by $Y[k] = W_1^{-2k} X[k]$.

5.44 The first 5 samples of the 9-point DFT H[k], $0 \le k \le 8$, of a length-9 real sequence h[n], $0 \le n \le 8$, are given by

$$H[k] = \{15 \qquad 6.8414 - j6.0572 \qquad 6.0346 - j1.957 \qquad j8.6603 \qquad -6.876 - j11.4883\}.$$

Determine the 9-point DFT G[k] of the length-9 sequence $e^{j2\pi n/3}h[n]$ without computing h[n], forming the sequence g[n], and then taking its DFT.

5.45) Consider the two finite-length sequences $g[n] = \{2 -1 \ 3\}, 0 \le n \le 2$ and $h[n] = \{-2 \ 4 \ 2 \ -1\}, 0 \le n \le 3$.

(a) Determine $y_L[n] = g[n] \circledast h[n]$.

(b) Extend g[n] to a length-4 sequence $g_e[n]$ by zero-padding and compute $y_C[n] = g_e[n] \oplus h[n]$.

(c) Determine $y_C[n]$ using the DFT-based approach.

- (d) Extend g[n] and h[n] to length-6 sequences by zero-padding and compute the 6-point circular convolution y[n] of the extended sequences. Is y[n] the same as $y_L[n]$ determined in Part (a)?
- 5.46 Show that the circular convolution is commutative.

5.47 Consider two length-N sequences $x_1[n]$ and $x_2[n]$ defined for $0 \le n \le N-1$. Let $y[n] = x_1[n] \bigotimes x_2[n]$. Prove the following equalities:

To nowing equations.

(a)
$$\sum_{n=0}^{N-1} y[n] = \left(\sum_{n=0}^{N-1} x_1[n]\right) \left(\sum_{n=0}^{N-1} x_2[n]\right),$$

(b) $\sum_{n=0}^{N-1} (-1)^n y[n] = \left(\sum_{n=0}^{N-1} (-1)^n x_1[n]\right) \left(\sum_{n=0}^{N-1} (-1)^n x_2[n]\right)$ for N even.

5.48 Let x[n] be a length-N sequence with an N-point DFT given by X[k]. Assume N is divisible by 3. Define a sequence

$$y[n] = x[3n], \qquad 0 \le n \le \frac{N}{3} - 1.$$

Express the $\frac{N}{3}$ -point DFT Y[k] of y[n] in terms of X[k].

5.49 The 8-point DFT of a length-8 complex sequence v[n] = x[n] + jy[n] is given by

$$V[0] = 3 + j7$$
, $V[1] = -2 + j6$, $V[2] = 1 - j5$, $V[3] = 4 - j9$,

$$V[4] = 5 + j2$$
, $V[5] = 3 - j2$, $V[6] = j4$, $V[7] = -3 - j8$,

where x[n] and y[n] are, respectively, the real and imaginary parts of v[n]. Without computing the IDFT of V[k], determine the 8-point DFTs X[k] and Y[k] of the real sequences x[n] and y[n], respectively. Verify your result by computing the IDFT of V[k] using MATLAB.

- 5.50 Determine the 4-point DFTs of each sequence of the following pairs of length-4 sequences defined for $0 \le n \le 3$ by computing a single DFT:
 - (a) $g[n] = \{2 \quad -1 \quad 3 \quad 0\}, \quad h[n] = \{-2 \quad 4 \quad 2 \quad -1\},$ (b) $x[n] = \{-3 \quad -2 \quad 2 \quad 4\}, \quad y[n] = \{1 \quad 2 \quad 3 \quad 4\}.$
- 5.51 Consider a rational discrete-time Fourier transform $X(e^{j\omega})$ with real coefficients of the form of

$$X(e^{j\omega}) = \frac{P(e^{j\omega})}{D(e^{j\omega})} = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_{M-1} e^{-j\omega(M-1)}}{d_0 + d_1 e^{-j\omega} + \dots + d_{M-1} e^{-j\omega(N-1)}}.$$

Let P[k] denote the M-point DFT of the numerator coefficients $\{p_i\}$ and D[k] denote the N-point DFT of the denominator coefficients $\{d_i\}$. Determine the exact expressions of the DTFT $X(e^{j\omega})$ for M=N=4 if the 4-point DFTs of its numerator and denominator coefficients are given by

$$P[k] = \{-5, -2 + j5, 4, -2 - j5\},$$
 $D[k] = \{3, 4 + j, -7, 4 - j\}.$

Verify your result using MATLAB.

5.52 Repeat Problem 5.51 for the 4-point DFTs of the numerator and denominator coefficients given by

$$P[k] = \{8, -5 - j6, -3, -5 + j6\},$$
 $D[k] = \{-6, 6 + j2, 5, 6 - j2\}.$

- 5.53 Consider a length-N sequence x[n] with a DTFT $X(e^{j\omega})$. Define an M-point DFT $\hat{X}[k] = X(e^{j\omega k})$, where $\omega_k = 2\pi k/M$, k = 0, 1, ..., M-1. Denote the inverse DFT of $\hat{X}[k]$ as $\hat{x}[n]$, which is a length-M sequence. Express x[n] in terms of $\hat{x}[n]$ and show that x[n] can be fully recovered from $\hat{x}[n]$ only if $M \ge N$.
- Let $X(e^{j\omega})$ denote the DTFT of the length-9 sequence $x[n] = \{1 -2 \ 3 -4 \ 5 -4 \ 3 -2 \ 1\}$.

 (a) For the DFT sequence $X_1[k]$, obtained by sampling $X(e^{j\omega})$ at uniform intervals of $\pi/6$ starting from $\omega = 0$, determine the IDFT $x_1[n]$ of $X_1[k]$ without computing $X(e^{j\omega})$ and $X_1[k]$. Can you recover x[n] from $x_1[n]$?
- (b) For the DFT sequence $X_2[k]$, obtained by sampling $X(e^{j\omega})$ at uniform intervals of $\pi/4$ starting from $\omega = 0$, determine the IDFT $x_2[n]$ of $X_2[k]$ without computing $X(e^{j\omega})$ and $X_2[k]$. Can you recover x[n] from $x_2[n]$?
- 5.55 Let x[n] be a length-N sequence with X[k] denoting its N-point DFT. We represent the DFT operation as $X[k] = \mathcal{F}\{x[n]\}$. Determine the sequence y[n] obtained by applying the DFT operation 4 times to x[n], i.e.,

$$y[n] = \mathcal{F}\{\mathcal{F}\{\mathcal{F}\{\mathcal{F}\{x[n]\}\}\}\}.$$

- 5.56 Let x[n] and h[n] be two length-51 sequences defined for $0 \le n \le 50$. It is known that h[n] = 0 for $0 \le n \le 16$ and $37 \le n \le 50$. Denote the 51-point circular convolution of these two sequences as u[n] and their linear convolution as y[n]. Determine the range of n for which y[n] = u[n].
- 5.57 The linear convolution of a length-110 sequence with a length-1300 sequence is to be computed using 128-point DFTs and IDFTs.
- (a) Determine the smallest number of DFTs and IDFTs needed to compute the above linear convolution using the overlap-add approach.
- (b) Determine the smallest number of DFTs and IDFTs needed to compute the above linear convolution using the overlap-save approach.
- **5.58** (a) Consider a length-N sequence x[n], $0 \le n \le N-1$, with an N-point DFT X[k], $0 \le k \le N-1$. Define a sequence y[n] of length LN, $0 \le n \le NL-1$, given by

$$y[n] = \begin{cases} x[n/L], & n = 0, L, 2L, \dots, (N-1)L, \\ 0, & \text{otherwise,} \end{cases}$$
 (5.189)

where L is a positive integer. Express the NL-point DFT Y[k] of y[n] in terms of X[k].

(b) The 5-point DFT X[k] of a length-5 sequence x[n] is shown in Figure P5.1. Sketch the 21-point DFT Y[k] of a length-21 sequence y[n] generated using Eq. (5.189).

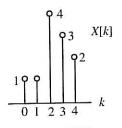


Figure P5.1

5.59 Consider two real, symmetric length-N sequences, x[n] and y[n], $0 \le n \le N-1$ with N even. Define the length- $\frac{N}{2}$ sequences:

$$x_0[n] = x[2n+1] + x[2n],$$
 $x_1[n] = x[2n+1] - x[2n],$
 $y_0[n] = y[2n+1] + y[2n],$ $y_1[n] = y[2n+1] - y[2n],$

where $0 \le n \le \frac{N}{2} - 1$. It can be easily shown that $x_0[n]$ and $y_0[n]$ are real, symmetric sequences of length- $\frac{N}{2}$ each. Likewise, the sequences $x_1[n]$ and $y_1[n]$ are real and antisymmetric sequences. Denote the $\frac{N}{2}$ -point DFTs of $x_0[n]$, $x_1[n]$, $y_0[n]$, and $y_1[n]$ by $X_0[k]$, $X_1[k]$, $Y_0[k]$, and $Y_1[k]$, respectively. Define a length- $\frac{N}{2}$ sequence u[n]:

$$u[n] = x_0[n] + y_1[n] + j(x_1[n] + y_0[n]).$$

Determine $X_0[k]$, $X_1[k]$, $Y_0[k]$, and $Y_1[k]$ in terms of the $\frac{N}{2}$ -point DFT U[k] of u[n].

5.60 The generalized discrete Fourier transform (GDFT) is a generalization of the conventional DFT to allow shifts in either or both indices of the transform kernel [Bon76]. The N-point generalized discrete Fourier transform $X_{\text{GDFT}}[k, a, b]$ of a length-N sequence x[n] is defined by

$$X_{\text{GDFT}}[k, a, b] = \sum_{n=0}^{N-1} x[n] \exp\left(-j\frac{2\pi(n+a)(k+b)}{N}\right). \tag{5.190}$$

Show that the inverse GDFT is given by

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{GDFT}}[k, a, b] \exp\left(j \frac{2\pi (n+a)(k+b)}{N}\right).$$
 (5.191)

5.61 Prove the following properties of the DCT: (a) linearity property of the DCT, given by Eq. (5.154), (b) symmetry property of the DCT, given by Eq. (5.155), and (c) energy preservation property, given by Eq. (5.156).

5.62 The *N* coefficients of the normalized DCT $X_{DCT}^{(n)}[k]$, $0 \le k \le N - 1$, given by Eq. (5.158), can be written in a matrix form $X_{DCT} = C_N x$, where

$$\mathbf{X}_{\text{DCT}} = \begin{bmatrix} X_{\text{DCT}}^{(n)}[0] & X_{\text{DCT}}^{(n)}[1] & \cdots & X_{\text{DCT}}^{(n)}[N-1] \end{bmatrix}^t, \ \mathbf{x} = [x[0] \ x[1] & \cdots & x[N-1]]^t,$$

and C_N is the $N \times N$ DCT matrix whose (k, n)th element is given by

$$X_{\text{DCT}}^{(n)}[k] = \sqrt{\frac{2}{N}}\beta[k] \sum_{n=0}^{N-1} \cos\left(\frac{\pi k(2n+1)}{2N}\right),$$

with $\beta[k]$ given by Eq. (5.160). Even though the DCT matrix C_N is orthogonal, i.e., $\mathbf{x} = \mathbf{C}_N^{-1} \mathbf{X}_{\text{DCT}} = \mathbf{C}_N^t \mathbf{X}_{\text{DCT}}$, its elements are irrational numbers and do not produce the original input vector \mathbf{x} by applying the inverse DCT

transformation to \mathbf{X}_{DCT} when implemented with finite-precision arithmetic. It is thus desirable in practice to make use of integer-valued orthogonal transform matrix with a uniform frequency decomposition similar to that of the DCT.

(a) One such transform proposed for the H.26L video compression standard is the 4 × 4 matrix [Bjo98]:

$$\mathbf{H}_N = \begin{bmatrix} 13 & 13 & 13 & 13 \\ 17 & 7 & -7 & -17 \\ 13 & -13 & -13 & 13 \\ 7 & -17 & 17 & -7 \end{bmatrix}.$$

Show that the above transform matrix is orthogonal and all its rows have the same \mathcal{L}_2 norm.

(b) A recently proposed simpler 4×4 transform matrix [Mal2002]:

$$\mathbf{G}_N = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix},$$

has a much smaller dynamic range than H_N . Show that the rows of the above transform matrix are orthogonal but do not have the same \mathcal{L}_2 norm.

5.63 Prove the following properties of the Haar transform: (a) orthogonality property, given by Eq. (5.171) and (b) energy conservation property, given by Eq. (5.174).

5.64 The N-point discrete Hartley transform (DHT) $X_{DHT}[k]$ of a length-N sequence x[n] is defined by [Bra83]

$$X_{\text{DHT}}[k] = \sum_{n=0}^{N-1} x[n] \left(\cos \left(\frac{2\pi nk}{N} \right) + \sin \left(\frac{2\pi nk}{N} \right) \right), \quad k = 0, 1, \dots, N-1.$$
 (5.192)

As can be seen from the above, the DHT of a real sequence is also a real sequence. Show that the inverse discrete Hartley transform (DHT) is given by

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{DHT}}[k] \left(\cos \left(\frac{2\pi nk}{N} \right) + \sin \left(\frac{2\pi nk}{N} \right) \right), \quad n = 0, 1, \dots, N-1.$$
 (5.193)

5.65 Let $X_{DHT}[k]$ denote the N-point DHT of a length-N sequence x[n].

(a) Show that the DHT of $x[(n-n_0)_N]$ is given by

$$X_{\mathrm{DHT}}[k]\cos\left(\frac{2\pi n_0 k}{N}\right) + X_{\mathrm{DHT}}[-k]\sin\left(\frac{2\pi n_0 k}{N}\right).$$

- (b) Determine the *N*-point DHT of $x[\langle -n \rangle_N]$.
- (c) Prove the Parseval's relation:

$$\sum_{n=0}^{N-1} x^2[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{\text{DHT}}^2[k].$$
 (5.194)

5.66 Develop the relation between the *N*-point DHT $X_{DHT}[k]$ and the *N*-point DFT X[k] of a length-*N* sequence x[n].

5.67 Let the *N*-point DHTs of the three length-*N* sequences x[n], g[n], and y[n] be denoted by $X_{DHT}[k]$, $G_{DHT}[k]$, and $Y_{DHT}[k]$, respectively. If $y[n] = x[n] \otimes g[n]$, show that

$$Y_{\text{DHT}}[k] = \frac{1}{2} X_{\text{DHT}}[k] (G_{\text{DHT}}[k] + G_{\text{DHT}}[\langle -k \rangle_N])$$

$$+ \frac{1}{2} X_{\text{DHT}}[\langle -k \rangle_N] (G_{\text{DHT}}[k] - G_{\text{DHT}}[\langle -k \rangle_N]).$$
(5.195)

5.68 The discrete combined Fourier transform (DCFT) of a length-N sequence x[n], $0 \le n \le N-1$, is defined as a linear combination of its N-point DFT and the N-point IDFT given by [Ans85]

$$X_{\text{DCFT}}[k] = \sum_{n=0}^{N-1} \left(\alpha_1 W_N^{nk} + \alpha_2 W_N^{-nk} \right) x[n], \quad 0 \le k \le N - 1,$$
 (5.196)

where at least one of the constants α_1 and α_2 is nonzero.

(a) Consider the sequence

$$y[n] = \sum_{n=0}^{N-1} \left(\beta_1 W_N^{-nk} + \beta_2 W_N^{nk} \right) X_{\text{DCFT}}[k], \quad 0 \le n \le N - 1.$$
 (5.197)

Show that y[n] = x[n], the inverse DCFT of $X_{DCFT}[k]$ if the following two conditions are satisfied:

$$\alpha_2\beta_1 + \alpha_1\beta_2 = 0,$$

$$N(\alpha_1\beta_1 + \alpha_2\beta_2) = 1.$$

(b) If $\alpha_2^2 \neq \alpha_2^2$, then show that the inverse DCFT of $X_{DCFT}[k]$ can be expressed as

$$x[n] = \frac{1}{N\left(\alpha_1^2 - \alpha_2^2\right)} \sum_{k=0}^{N-1} \left(\alpha_1 W_N^{-nk} - \alpha_2 W_N^{nk}\right) X_{\text{DCFT}}[k], \quad 0 \le n \le N - 1.$$
 (5.198)

- (c) Show that $X_{\text{DCFT}}[k]$ is a real sequence if $\alpha_1 = \alpha_2^* = \alpha_{\text{re}} + j\alpha_{\text{im}}$, provided $\alpha_{\text{re}} \neq 0$, and $\alpha_{\text{im}} \neq 0$. (d) Show that the discrete Hartley transform is a special case of the real-valued DCFT.

5.69 The Hadamard transform $X_{\text{HT}}[k]$ of a length-N sequence x[n], n = 0, 1, ..., N - 1, is given by [Gon2002]

$$X_{\text{HT}}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n](-1)^{\sum_{i=0}^{\ell-1} b_i(n)b_i(k)}, \qquad k = 0, 1, \dots, N-1,$$
 (5.199)

where $b_i(r)$ is the *i*th bit in the binary representation of r, and $N=2^{\ell}$. In matrix form, the Hadamard transform can be represented as

$$\mathbf{X}_{\mathrm{HT}} = \mathbf{H}_{N}\mathbf{x},$$

where

$$\mathbf{X}_{\text{HT}} = [X_{\text{HT}}[0] \quad X_{\text{HT}}[1] \quad \cdots \quad X_{\text{HT}}[N-1]]^t,$$

 $\mathbf{x} = [x[0] \quad x[1] \quad \cdots \quad x[N-1]]^t.$

- (a) Determine the form of the Hadamard matrix H_N for N=2,4, and 8.
- (b) Show that

$$\mathbf{H}_4 = \left[\begin{array}{cc} \mathbf{H}_2 & \mathbf{H}_2 \\ \mathbf{H}_2 & -\mathbf{H}_2 \end{array} \right], \qquad \mathbf{H}_8 = \left[\begin{array}{cc} \mathbf{H}_4 & \mathbf{H}_4 \\ \mathbf{H}_4 & -\mathbf{H}_4 \end{array} \right].$$

(c) Determine the expression for the inverse Hadamard transform.

MATLAB Exercises 5.16

M 5.1 Using MATLAB, compute the N-point DFTs of the length-N sequences of Problem 3.19 for N = 4, 6, 8, and 10. Compare your results with that obtained by evaluating the DTFTs computed in Problem 3.19 at $\omega = 2\pi k/N$, $k = 0, 1, \dots, N - 1.$

5.16. MATLAB Exercises

299

- M 5.2 Write a MATLAB program to compute the circular convolution of two length-N sequences via the DFT-based approach. Using this program, determine the circular convolution of the following pairs of sequences:
 - (a) $g[n] = \{5, -2, 2, 0, 4, 3\}, h[n] = \{3, 1, -2, 2, -4, 4\},$
 - (b) $x[n] = \{2 j, -1 j3, 4 j3, 1 + j2, 3 + j2\}, v[n] = \{-3, 2 + j4, -1 + j4, 4 + j2, -3 + j\},$
 - (c) $x[n] = \cos(\pi n/2)$, $y[n] = 3^n$, $0 \le n \le 4$.

Verify your result using the function circonv.

- circonv.m
- M 5.3 Using MATLAB, verify the symmetry relations of the DFT of a complex sequence as listed in Table 5.1.
- M 5.4 Using MATLAB, verify the symmetry relations of the DFT of a real sequence as listed in Table 5.2.
- M 5.5 Using MATLAB, prove the following general properties of the DFT listed in Table 5.3: (a) linearity, (b) circular time-shifting, (c) circular frequency-shifting, (d) duality, (e) N-point circular convolution, (f) modulation, and (g) Parseval's relation.
- M 5.6 Write a MATLAB program to compute the DFTs of two real sequences of equal lengths based on the method outlined in Section 5.9.1.
- M 5.7 Verify the results of Problem 5.34 by computing the DFT X[k] of the sequence x[n] given using MATLAB, and then evaluate the functions of X[k] listed.
- M 5.8 Verify the results of Problem 5.35 by computing the IDFT x[n] of the DFT X[k] given using MATLAB, and then evaluate the functions of x[n] listed.
- M 5.9 Write a MATLAB program to implement the Fourier-domain filtering illustrated in Example 5.13. Using this program, verify the results of this example.
- M 5.10 Write a MATLAB function to implement the overlap-save method. Using this function, demonstrate the filtering of the noise-corrupted signal of Example 2.13 using a length-3 moving average filter by modifying Program 3.6.

Program 3 6