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Example 6.42 reexamines the stability of the causal LTI system given by Eq. (6.106) of Example 6.40
from the pole locations of the transfer function of the system.

EXAMPLE 6.42  Causal LTI IIR System with Infinite Number of Unit Circle Poles

The transfer function H (z) of the causal LTI discrete-time system of Example 6.40 is given by the z-transform of
the impulse response of Eg. (6.106). It is given by

o0 zn
HR) =} — =log, (

n=|

). it (6.107)

I=z=1
which has infinite number of poles on the unit circle at z = 1, and hence, it is unstable.

On the other hand, an anticausal digital filter has a left-sided impulse response {/2[n]} and as a result,
the ROC of its transfer function H (z) is interior to the circle going through the pole that is closest to the
origin. However, for BIBO stability, the Fourier transform H (e7@y of {1[n]) must exist, implying that the
unit circle of H(z) lies in its ROC. Hence, in this case, all poles of a stable anticausal transfer function
H (z) must be strictly outside the unit circle. This type of filter will thus have a stable response by running
time backwards. In practice, such an anticausal transfer function can be implemented by storing a finite
length of the output data in a buffer and reading it in a reverse order.

6.8 Summary

The z-transform of an aperiodic sequence has been introduced and its properties reviewed. As in the case of
the discrete-time Fourier transform discussed in Chapter 3, and the discrete Fourier transform, the discrete
cosine transform, and the Haar transform discussed in Chapter 3, this alternate representation reviewed
in this chapter also consists of a pair of expressions: the analysis equation and the synthesis equation.
The analysis equation is used to convert from the time-domain representation to the transform-domain
representation, while the synthesis equation is used for the reverse process.

An important and useful characterization of an LTI discrete-time system is its transfer function given
by the z-transform of its impulse response. The properties of the transfer function have been studied, and
the stability condition of an LTI system in terms of the pole locations of its transfer function has been
derived,

6.9 Problems

6.1 Show that for a causal sequence x[1] defined for n = 0 and with a z-transform X (2},
x[0]= lim X(2).
=00
The above result is known as the initial value theorem.

6.2 Derive the z-transforms and the ROCs of the following sequences given in Table 6.1:
() §[n], (b) na" w[n], and (c) (" sinwqn)pe[n].

6.3 Determine the z-transforms of the following sequences and their respective ROCs:
(@) x ] =a"uln — 2], ) xa[n]=—a"ul—n—31, (@©ux3ln]=c"uln-+41, (d)xy4ln]l= o u[—nl.
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6.4 Determine which one of the following four sequences has the same z-transform:
(a) x1[n] = (0.H" w[n] + (—0.6)"plnl, (b) x2ln] = (0.4 pu[n] — (=0.6)" pu[—n — 1],
(©) x3ln] = — (0" u[—n — 11— (=0.6)' u[—n — 11, (d) xaln] = — (0.4 pu[—n — 1]+ (=0.6)" pln].

6.5 Consider the following sequences:
(i) xpln] = (0.3)" uln + 11, (ii) xa[n] = ©.7)'uln — 11, (iii) x3ln] = (0.4 uln — 51,
(iv) xgln] = (=0.4)" u[—n — 2.
(a) Determine the ROCs of the z-transform of each of the above sequences.
(b) From the ROCs determined in Part (a), determine the ROCs of the following sequences:
(i) y1[n] = x1ln] + x2[n], (i) y2[n] = x1[n] +x3 [n], (ii1) y3[n] = xj[n] + x4lnl,
(iv) yaln] = x2[n] 4+ x3[nl, (v) ys[nl = xalnl -+ xalnl, (vi) yglnl = x3ln] + x4lnl.

6.6 Determine the z-transform of the two-sided sequence v[n] = el || < 1. What is its ROC?

6.7 Determine the z-transform of each of the following sequences and their respective ROCs. Assume 18] > |al = 0.
Show their pole-zero plots and indicate clearly the ROC in these plots.

(@) xy[n] = (@" + pM)uln + 21, (b) xz[n] = o puf—n — 21+ Bluln — 11,

(c) x3[n] = o pe[n + 11+ B"pl—n — 2]

6.8 Consider the z-transform

(2 4 0.2z +0.1)(z> — 2 +0.5)
@2 +03z—0.18)(z2 — 2z +4)
There are four possible nonoverlapping regions of convergence (ROCs) of this z-transform. Discuss the type of inverse
z-transform (left-sided, right-sided, or two-sided sequences) associated with each of the four ROCs. It is not necessary
to compute the exact inverse transform.

(6.108)

Gz) =

6.9 Let the z-transform of a sequence x[n] be X (z), with Ry denoting its ROC. Express the z-transforms of the real
and imaginary parts of x[r] in terms of X(z). Show also their respective ROCs.

6.10 The z-transform X (z) of the length-9 sequence of Problem 3.38 is sampled at seven points @p = 2 k)1,
0 < k < 6, on the unit circle yielding the frequency samples

Rkl = X(@.mpirne, 0=k =6

Determine, without evaluating X[k], the periodic sequence #[n] whose discrete Fourier series coefficients are given
by X[k]. What is the period of ¥[#]?
6.11 Repeat Problem 6.10 for the length-9 sequence of Problem 3.39.

6.12 Let X(z) denote the z-transform of the length-12 sequence x[n] of Problem 5.34. Let Xolk] represent the
samples of X (z) evaluated on the unit circle at nine equally spaced points given by z = ORI 0 <k <8, ie,

Xolk] = X (2| .= pit2ak/9 0<k<8

Determine the 9-point IDFT xp[n] of X o[k without computing the latter function.

6.13 Consider the causal sequence x[n] = (=0.5)" pulnl, with a z-transform given by X (z).
(a) Determine the inverse z-transform of X (23) without computing X ().
(b) Determine the inverse z-transform of (1 + hHx (23) without computing X{z).

6.14 Determine the z-transforms of the sequences of Problem 3.18 and their ROCs. Show that the ROC includes the
unit circle for each z-transform. Evaluate the <-transform evaluated on the unit circle for each sequence and show that
it is precisely the DTFT of the respective sequence computed in Prablem 3.1 8.
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6.15 Determine the z-transforms of the sequences of Problem 3.19 and their ROCs. Show that the ROC includes the
unit circle for each z-transform. Evaluate the z-transform evaluated on the unit circle for each sequence and show that
it is precisely the DTFT of the respective sequence computed in Problem 3.19.

6.16 Evaluate the linear convolutions of Problem 2.50 using the polynomial multiplication method.

6.17 Prove Eq. (6.73).

6.18 Evaluate the linear and circular convolutions of the sequences g[n1] and /i[11] of Problem 5.45 using the polynomial
multiplication method. Verify your results in MATLAB using the functions conv and circonv.

6.19 Consider a rational z-transform G (z) = P(z)/D(z), where P(z) and D(z) are polynomials in z~!. Let p; denote
the residue of G(z) at a simple pole at z = A,. Show that

oy s e
L D' (2) ::;‘{.
where D'(z) = l‘if—if]'
6.20 Each one of following z-transforms
2
s 2=+ 0.1z 4 0.87
Nale) = Xp(z) = =

2 4+03z-0.18" (z +0.6)(z — 0.3)2

has three ROCs. Evaluate their respective inverse z-transforms corresponding to each ROC.

6.21 Consider the z-transform G(z) of Eq. (6.13), with M < N. If G(z) has only simple poles, show that py/dy is
equal to the sum of the residues in the partial-fraction expansion of G(z)} [Mit98].
6.22 Show that the inverse z-transform /21[#] of the following rational z-transform

|
T 1 = 2r(cos @)z 4122727

H(z) lz] = r >0
is given b
e i ghiit 4170

! —]
thl sin 6

uln).

6.23 Determine z-transform of each of the following left-sided sequences:
(W) x[n] =a"u[—n — 1], (b) y[n] = (n + Dea" u]—n — 1].

6.24 Determine the inverse z-transforms, xq[#] and xa[n], of the following rational z-transforms

(ﬂ)X1(2)=W. lz| = 1, (b)X2(2)=1_:74.
by expanding each in a power series and computing the inverse z-transform of the individual terms in the power series.
Compare the results with that obtained using a partial-fraction approach.

|z] = 1,

6.25 Determine the inverse z-transforms of the following z-transforms:
=
@Xi@=log o™, Ll>lal,  ®) X2 =log (). Iz > I/lal.

© X3 =log(t=2=r). >l @ Xa@ =log(z).  lal > 1/l

circonv.m
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6.26 The z-transform of a right-sided sequence h[n] is given by

e

H) = e 05t

Find its inverse z-transform fi[n] via the partial-fraction approach. Verify the partial fraction expansion using MATLAB.

6.27 Prove the following properties of the z-transform listed in Table 6.5: (a) conjugation, (b) time-reversal, (c) lin-
earity, (d) time-shifting, () multiplication by an exponential sequence, and (f) differentiation.

6.28 A generalization of the DFT concept leads to the nonuniform discrete Fourier transform (NDFT) XnprETlA]
defined by [Bag08]

N-—1

XnpeTlkl = X(zp) = D xlnlgy”,  0sk=N-1L (6.109)

n=0
where zg, 21, - - .. ZN—1, are NV distinct points located arbitrarily in the z-plane. The NDFT has been applied to the
efficient design of digital filters, antenna array design, and dual-tone multifrequency detection [Bag98]. The NDFT
can be expressed in a matrix form as

XNDFT[O] .t[()]
Xnprrit] x[1]
. =Dy ; , (6.110)
XnprTIN — 1] x[N-1]
where
1 _—1 =2 —(N=1)
<0 20 50
R R _—(N=1)
~1_1 “]_‘J hl_(N_])
Dy=| 1 % 57 e Ip (6.111)

g7 -2 _—(N-1)

N R R
is the N x N NDFT matrix. The matrix Dy is known as the Vandermonde matrix. Show that it is nonsingular provided
the N sampling points zy are distinct. In which case, the inverse NDFT is given by

x[0] Xnprrl0]
x[1] 3 XnprFrlll
: =Dj, : (6.112)
XN = 1] Sgsr i =1

6.29 In general, for large N, the Vandermonde matrix is usually ill-conditioned (except for the case when the NDFT
reduces to the conventional DFT), and a direct inverse computation is not advisable. A more efficient way is to directly

determine the z-transform X (z),
N—1

X(@@) =) x[nl™, (6.113)
n=0

and hence, the sequence x[n], from the given N-point NDFT Xnprrlk] by using some type of polynomial interpolation
method [Bag98]. One popular method is the Lagrange interpolation formula, which expresses X (z) as

N—-1

X@=y

k=0

1i.(z)

Xnorrlkls 6.114
T NDFTLK] ( )
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where

N—1
@ =[[a-zh (6.115)
i={)
ik
Consider the z-transform X(z) = | — 2z7! 4 3:72 — 4273 of a length-4 sequence x[n]. By evaluating X (z) at
zp=—-1/2, 51 = 1,22 = 1/2, and z3 = 1/3, determine the 4-point NDFT of x[n] and then use the Lagrange
interpolation method to show that X (z) can be uniquely determined from these NDFT samples.

6.30 Consider a sequence x[n] with a z-transform X (z). Define a new z-transform X (z) given by the complex natural
logarithm of X (z); thatis, X(z2) = In X (z).The inverse z-transform of )?(:} to be denoted by t[n] is called the complex
cepstrum of x[n] [Tri79]. Assume that the ROCs of both X (z) and X(2) include the unit circle.

(a) Relate the DTFT X (¢/“) of x[n] to the DTFT X (e/*) of its complex cepstrum 1 [n].

(b) Show that the complex cepstrum of a real sequence is a real-valued sequence.

(c) Let Xev[n] and Syq[n] denote, respectively, the even and odd parts of a real-valued complex cepstrum £{n].
Express Yey[n] and Xog[n] in terms of X(e/?), the DTFT of xln].

6.31 Determine the complex cepstrum £[n] of a sequence x[n] = a8[n] -+ b8[n — 1], where |#/a| < 1. Comment on
your results.

6.32 Let x[n] be a sequence with a rational z-transform X (z) given by

Ny e Ny
[T (0 = aez= "[T5, (= w2
Ny _ N, ’
oo (1= Bz DT (1 = 82)
where . and 8, are the zeros and poles of X (z) that are strictly inside the unit circle and 1/ and 1/8; are the zeros
and poles of X (z) that are strictly outside the unit circle [Rab78].
{(a) Determine the exact expression for the complex cepstrum £[n] of x[n].
(b) Show that £[#] is a decaying bounded sequence as |n| — co.
(c) If ;. = B = 0, show that ¥[n] is an anticausal sequence,
(d) If 4 = &; = 0, show that ¥[n] is a causal sequence.

X(z)=K

6.33 Let x[#] be a sequence with a rational z-transform X (z) with poles and zeros strictly inside the unit circle. Show
that the complex cepstrum t[#] of x[#] can be computed using the recursion relation [Rab78]:

0, n < 0,
N log(x[0]), =0,

al n=1k  aprq . xln=k
ﬂiTj_Z;\:uﬁ‘—l[ﬂ‘ X0 n>0.

6.34 The magnitude response of a digital filter with a real-coefficient transfer function H (z) is shown in Figure P6.1.
Plot the magnitude response of the filter H(z”).

| o)

/] -

0 0.Ir 03w T

Figure P6.1
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6.35 In this problem, we consider the determination of a real rational, causal, stable discrete-time transfer function

_Pw@ _ YN opiz”
D) YNgdi

H(2)

from the specified real part of its frequency response [Dut83]:

Z;N:U ajcos(im) Aled®)

Hee(el?) = = — (6.116)
* TN bicos(iw)  Blel)
(a) Show that
oy — 1 s -1 1 [PE@DEH+HPEYDE)
Hee(e'®)= 3 [H(L) + H(z )]!:=ef“’ =7 [ DEODED ] e (6.117)
(b) Comparing Eqs. (6.116) and (6.117), we get
Be/*) = D@DET|__,
::e (8]
oy 1 A _—1
A@?) = §[P@DEN + P \DD]| _,.- (6.118)

The spectral factor D(z) can be determined, except for the scale factor K, from the roots of B(z) = B(ei®) |:=ej(,;

inside the unit circle. Show that
N

K =B/ [0 -2

=]

(c) To determine P(z), Eq. (6.11 8) can be rewritten through analytic continuation as
A@ = [P@DE + PEYD@)].

Substituting the polynomial forms of P(z) and D(z) and equating coefficients of (z' + z~1)/2 on both sides of the
above equation, we arrive at a set of N + 1 equations that can be solved for the numerator coefficients (p;}. Using the
above approach, determine H (z) for which

1 4+ cosw + cos 2w

Heo(e/?) =
e (e 17 — 8cos 2w

6.36 Let H(z) be the transfer function of a causal stable LTI discrete-time system. Let G(z) be the transfer function
obtained by replacing z—!in H(z) with a stable allpass function A(z); that is, G(z) = H{Z),~1=A0) Show that
G(1) = H(1) and G(—1) = H(=1).

6.37 Consider the digital filter structure of Figure P6.2, where
Hy(z) = 12+337 407272, Ha@)=—41- 0 5:-1 0972, Hy(z)=23+4327"+ 0.8272.

Determine the transfer function H(z) of the composite filter.

xfn] ¥ln]

Figure P6.2
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6.38 Determine the transfer function of each of the following causal LTI discrete-time systems described by the dif-
ference equations. Express each transfer function in a factored form and sketch its pole-zero plot. Is the corresponding
system BIBO stable?
(a) y[n] = Sx[n] + 9.5x[n — 1]+ L.4x[n — 2] = 24x[n — 3] + 0.1y[n — 1] — 0.14y[n — 2] — 0.49y[n — 3].
(b) y[n] = 5x[n] 4+ 16.5x[n — 1]+ 14.7x[n — 2] — 22.04x[n — 3] — 33.6x[n — 4] +0.5y[n — 1] = 0.1y[n — 2]
—0.3y[n — 3]+ 0.0936y[n — 4].

6.39 Determine the expression for the impulse response {/i[n]} of the following causal IIR transfer function:

3 45—13z71 + 112,72
T 4+05z- 4032721 = 0.4z7 Y

H(z)

6.40 The transfer function of a causal LTI discrete-time system is given by

1-33z-1+036:72
1 +03z-1 —0.18-2"

)=

(a) Determine the impulse response /;1[#] of the above system.
(b) Determine the output y[2] of the above system for all values of n for an input

x[n] = 2.1(0.4)" p[n] + 0.3(=0.3)" pu[n].

6.41 Using z-transform methods, determine the explicit expression for the output y[n] of each of the following causal
LTI discrete-time systems, with impulse responses and inputs as indicated:
(@) h{n] =(—0.H)"uln], x[]=0.2)"un], (b) h[n] = (=0.2)"'u[n], =x[n] = (=0.2)"uln].

6.42 Using z-transform methods, determine the explicit expression for the impulse response i[n] of a causal LTI
discrete-time system that develops an output y[n] = 2(—0.3)" ;¢[»] for an input x[n] = 4(0.6)" p[n].

6.43 A causal LTI discrete-time system is described by the difference equation
y[n] =02y[n — 114+ 0.08y[n — 2] + 2x[n],

where v[n] and y[n] are, respectively, the input and the output sequences of the system.
(a) Determine the transfer function H(z) of the system.
(b) Determine the impulse response /i[n] of the system.
(c) Determine the step response s[#] of the system.

6.44 Determine the frequency response H (¢/%) of the transfer function

-1

l—z7=

H(z) = ;
@ 1 — (1 +a)cos(wa)z—! +z—2

Show that the magnitude response | H (e4%)] assumes its maximum value of 2/(1 —e) at w = w,.

6.45 Determine a closed-form expression for the frequency response H (e/%) of the LTI discrete-time system char-
acterized by an impulse response
i[n] = 8[n] — adln — R, (6.119)

where || < 1. What are the maximum and the minimum values of its magnitude response? How many peaks and
dips of the magnitude response occur in the range 0 < w < 2w? What are the locations of the peaks and the dips?
Sketch the magnitude and the phase responses for R = 6.
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6.46 Determine a closed-form expression for the frequency response G{(e/®) of the LTI discrete-time system charac-
terized by an impulse response

g[nl = hn]@h(nl@Aln], (6.120)
where /i[11] is given by Eq. (6.119).

6.47 Determine a closed-form expression for the frequency response G (e4®) of an LTI discrete-time system with an
impulse response given by
a', 0<n<M-—1,
gl = 8
0 otherwise,

where || < 1. What is the relation of G(ei®) 10 H{e!®) of Eq. (3.98)7 Scale the impulse response by multiplying
it with a suitable constant so that the dc value of the magnitude response is unity.

6.48 Determine the expression for the frequency response H{e/®) of a causal ITIR LTI discrete-time system charac-
terized by the input—output relation

y[n] = xln] +ayln - R], le] < 1,

where v[n] and x[n] denoie, respectively, the output and the input sequences. Determine the maximum and the
minimum values of its magnitude response. How many peaks and dips of the magnitude response oceur in the range
0 < @ < 2m? What are the locations of the peaks and the dips? Sketch the magnitude and the phase responscs for
R =6.

6.49 An IIR LTI discrete-time system is described by the difference equation
ylnl+ayyn— 11+ arvln — 21 = bpx[n] + byxln — 11+ baxfn — 2]

where v[n] and x[n] denote, respectively, the output and the input sequences. Determine the expression for its
frequency response. For what values of the constants b; will the magnitude response be a constant for all values of w?

6.50 Determine the inpui—output relation of a factor-of-2 up-sampler in the frequency domain. The time-domain
input-output relation of the factor-of-L up-sampler is given by Eq. (2.20).

6.51 Consider an LTI discrete-time system with an impulse response h{n] = (0.5)"u[n]. Determine the frequency
response H (¢/*) of the system and evaluate its value at w = £/5. What is the steady-state output y[n] of the system
for an input x[rr] = cos(zrn/S)uln]?

6.52 Let H{z) be the transfer function of a causal, stable LTI discrete-time system. Consider the transfer function
G(z) = H(2);=F(). Whatare the conditions that need to be satisfied by the transformation F(z) so that G (z) remains
stable?

6.53 Determine the z-transform F(z) of the Fibonacci sequence { f{n]} of Problem 2.70. Evaluate the inverse z-
transform of F(z2).

6.54 The rime constant K of an LTI stable causal discrete-time system with an impulse response /i[71] is given by the
value of the total time interval 1 at which the partial energy of the impulse response is within 93% of the total energy.

that 1s,
K

oo
Y. il =095 \fdl? .

n=0 n=0

Determine the time constant K of the first-order causal transfer function H{z) = 1/(1 — gz=h, 1l < L.
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6.55 Figures P6.3(a) and P6.3(b) show, respectively, the DPCM (differential pulse-code modidarion) coder and decoder
often employed for the compression of digital signals [Jay84]. The linear predictor P(z) in the encoder develops a
prediction ¥[n] of the input signal x[n], and the difference signal d[n] = x[n] — ¥[n] is quantized by the quantizer Q
developing the quantized output #[n], which is represented with fewer bits than that of x[#]. The output of the encoder
is transmitted over a channel to the decoder. In the absence of any errors due to transmission and quantization, the
input v[#n] to the decoder is equal to u[#], and the decoder generates the output ¥[n], which is equal to the input x[n].
Determine the transfer function H(z) = U(z)/X(z) of the encoder in the absence of any quantization and the transfer
function G(z) = Y (z)/ V(z) of the decoder for the case of each of the following predictors, and show that G(z) is the
inverse of H(z) in each case.

@PE@ =Mzl and(®) P2) =z~ + haz 2

] —+b® din] e — ] 11]
Linear predictor vin] _4-:_6‘) » vln]
Snl d— P(z) . Linear predictor
T* Pz
(a) (b)
Figure P6.3

6.56 Consider the discrete-time system of Figure P6.4. For Hy(z) = | +az ™!, find a suitable Fy(z) so that the output
v[n] is a delayed and scaled replica of the input.

latlwl
x[n] ¥[n]
[ Hyl-2) |—-| ~Fyl-3) fj}‘

Figure P6.4

6.57 A causal stable LTI discrete-time system is characterized by an impulse response /11 [#] = 1.28[#]+0.5(—=0.5)" u[n]+
—~0.6(0.2)"" e[n]. Determine the impulse response f12[n] of its inverse system, which is causal and stable.

6.58 Show that the group delay 7, (w) of an LTI transfer function H (z) can be expressed as [Fot2001]

o o1
2y (w) = w : (6.121)

r=¢lmw

dH({)/dz

where T(z) =z )

6.10 MarLae Exercises

M 6.1 Using Program 6_1, determine the factored form of the following z-transforms:

24— 523 4 13.48:2 - 778249

)= = Program 6 1.m
®) G12) = 4244723 42022 - 08248 7 = B
524 +3.523 421522 — 4.6z I8
b} G2(2) = 53— 3 3 = ,
5z 4155z + 317z + 2252 + 4.8

-



Program 6 4.m
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and show their pole-zero plots. Determine all possible ROCs of each of the above z-transforms, and describe the type
of their inverse z-transforms (left-sided, right-sided, two-sided sequences) associated with each of the ROCs.

M 6.2 Using Program 6.3, determine the partial-fraction expansions of the --transforms listed in Problem 6.20, and
then determine their inverse z-transforms.

M 6.3 Using Program 6 4, determine the z-transform as a ratio of two polynomials in 2~ from each of the partial-
fraction expansions listed below:

4 7
X ()=3———7— . lz1 = 0.2,
@N@=3-5= 5= "
3 144270

b) Xa(z) = —2.5+ - .zl > 025,
) (40421 1406272 =
PN JURNYUN. SO ol > 08
C )= Y Zl = V.0,

3 @1 2o T a+2 0 14064272
d) X 54— . 0.75

z)=-—2-1 i Z L.

()Xo = =5+ 7T ¥ 135 T 409272 el =

M 6.4 Using Program 65, determine the first 30 samples of the inverse -transforms of the rational z-trunsforms
determined in Problem M6.3. Show that these sumples are identical to those obtained by explicitly evaluating the
exacl inverse z-transforms.

M 6.5 Repeat Problem 6.57 using MATLAB.
M 6.6 Write a MATLAB program to compuie the NDFT and the inverse NDFT using the Lagrange interpolation

method. Verify your program by computing the NDFT of a length-20 sequence and reconstructing the sequence from
its computed NDFT.





