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EXAMPLE 7.27  Stability Testing Using MATLAB

We test the stability of the transfer function of Eqg. (7.154) using MATLAB. To this end we make use of Program
7.2. The input data is the vector den of the coefficients of the denominator polynomial entered inside a square
bracket in descending powers of z as indicated below:

den = [4 3 2 1 1]

The output data are the stability test parameters {k;} . The program also has a logical output, which is
stable = 1 if the transfer function is stable; otherwise, stable = 0.
The output data generated for the transfer function of Eq. (7.154) are as follows;

The stability test parameters are
0.2500 0.0667 0.3527 0.5248

stable = 1

Note that the stability test parameters are identical to those.computed in Example 7.25.

7.10 Summary

The concept of filtering is introduced, and several ideal filters are defined. Several simple approximations
to the ideal filters are next introduced. In addition, various special types of transfer functions that are often
encountered in practice are reviewed. The concept of complementary transfer functions relating a set of
transfer functions is discussed, and several types of complementary conditions are introduced.

The inverse system design is encountered in estimating the unknown input of a discrete-time system
from its known output. The determination of the transfer function of the inverse of a causal LTI discrete-
time system with a rational transfer function is outlined. The recursive computation of the unknown causal
input signal from the impulse response of a causal LTI system and its known output is outlined. Next,
two methods are outlined for the system identification problem. In one approach, a recursive algorithm is
described for determining the impulse response of a causal initially relaxed system from its known input
and output sequences. In the second method, the frequency response of the system is determined from the
cross-energy spectrum of the output and the input signal and the energy spectrum of the input. Alternately,
the square magnitude function of the system can be determined from the energy spectrum of the output
and the input signals.

An important building block in the design of a single-input, single-output LTI discrete-time system is
the digital two-pair, which is a two-input, two-output LTI discrete-time system. Characterizations of the
digital two-pairs and their interconnections are discussed. A very simple algebraic procedure for testing
the stability of a causal LTI transfer function is then introduced.

7.11 Problems

7.1 Show that the transfer function of the M-point moving-average filter of Eq. (3.97) is a BR function,

7.2 Consider the first-order causal and stable allpass transfer function given by
*
I —dfz

:—(.’1 '

Al(z) =

Program 7 2.n
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Determine the expression for (l — Ay (z)|2) , and then show that

~ | =<0 for |z|*
(1-14@P) {=0, forlcP

Iy
1,
>0, for|z]>> L.

voIllA

Now, using the above approach, show that Property 2 given by Eq. (7.20) holds for any arbitrary causal stable allpass
transfer function.

7.3 Derive Property 3 of a stable allpass transfer function given by Eq. (7.21).

7.4 A noncausal LTI FIR discrete-time system is characterized by an impulse response i[n] = a;8[n — 2] —azé[n —
11 — a38[n] + aqdln + 1] — aséln + 2]. For what values of the impulse response samples will its frequency response
H (e?%) have a zero phase?

7.5 Let a causal LTI discrete-time system be characterized by a real impulse response /i[n] with a DTFT H (ef‘”).
Consider the system of Figure P7.1, where x[n] is a finite-length sequence, Determine the frequency response of the
overall system G (e/®) in terms of H (e/*), and show that it has a zero-phase response.

> hn] ——l

xn] ——¢ jl-)——b yinl
L,| Time- [, = Time-

reversal reversal

Figure P7.1

7.6 Show that an Mth-order causal complex coefficient allpass transfer function is of the form

d¥;+ dL_lz_l A +dfz_M"'1 e ¥

Ayz)==% :
w2 l+d|z_1+“'+dM_]z_M+l +dyz—M

7.7 Determine all possible causal stable transfer functions H(z) with a square-magnitude function given by

9(1.0625 + 0.5 cos w)(1.49 — 1.4 cosw)

Jjoy 2 —
el (1.36 + 1.2 cos w)(1.64 4+ 1.6 cos w)

7.8 Consider the following five FIR transfer functions:

() i) =2+ 14z=" = 09772 = 0.15827% +0.4104z7* + 0.0294z — 0.0668:7°,

(i) Ha() = 1 +2.72~" — 1261272 — 24.7572 7% + 66.30177% + 62,0722 — 126.7862°,
(i) H3() = 0.2 — .26z~ + 1,934z + 10.41327 + 1934774 —0.26:7° + 0.2z79,
@) Ha(@) = 1.25 + 05z~ = 21272 = 2.1z~ 405275 +1.25¢7°,

) H(z) = 114+ 3.12271 2502 4. 0.6:73 + 0.5 +0.06:7% +27°.

Using the M-file zplane, determine the zero locations of each, and then answer the following questions:

(a) Which one of the above FIR filters have a linear-phase response?
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(b} Which one of the above FIR filters have a minimum-phase response?

(c) Which one of the above FIR filters have a maximum-phase response?

7.9 A third-order FIR filter has a transfer function given by
Gia) =@2+34z7 —47 3 - 1570,

(1) Determine the transfer functions of all other FIR filters whose magnitude responses are identical to that of
Gi(2).

(b) Which one of these filters has a minimum-phase transfer function, and which one has a maximum-phase transfer
function?

(e) If g[n] denotes the impulse response of the kth FIR filter determined in Part (a), compute the partial energy of
the impulse response given by

n
Elml= Y glm®.  0<n<3,

m=0
for all values of k, and show that
n I
7 2
D lgklml? < 3 lgminlmli?,
m=( m=0
and
o0 oo
2 )
Do lelml? = 3" lgminlm]?,
m=0 m=0
for all values of &, and where gin[#] is the impulse response of the minimum-phase FIR filter determined in
Part (a).

7.10 The transfer functions of five FIR filters with identical magnitude responses are given below:

-2

Hi(2)=1-05z"" 408272~ 04272 4 0.25:7* - 0.125:75 +0.2: 6 —0.1277,
Hy(z) =05 +025:7" 4+ 0472 —0.425:73 +0.75:7% — 075275 + 0.6:5 — 0.2:77,
H3(z) = —0.25 + 02571 4017572 4+ 0.7:72 = 045274 +0.9:75 — 0.6:70 + 0427,
Hy2)=—-05+z""—04z724 08273 - 0.125274 +0.25:5 —0.1z-5 + 0.2:77,
Hs(z) = -0.1+0.2z71 0,125z 4+ 025773 — 04774 4+ 0.8z~ —0.5:6 + ;7.

Which transfer has all its zeros outside the unit circle? Which one has all its zeros inside the unit circle? How
many other length-8 FIR filters exist that have the same magnitude response as that of the above transfer functions?

7.11 A causal LTI FIR discrete-time system is characterized by an impulse response fi[n] = ai8[n] + a28[n — 1] +
a38[n — 2] +ay8ln — 3]+ as8[n — 4]+ agd[n — 5). For what values of the impulse response samples will its frequency
response A (¢/*) have a constant group delay?

7.12 An FIR LTI discrete-time system is described by the difference equation
Yinl=ayx[n + k] —aax[n +k— 1] +arx[n + k=3 —ayx[n+ k- 4],

where y[n] and x[n] denote, respectively, the output and the input sequences. Determine the expression for it
frequency response H (e/*), For what values of the constant k will the system have a frequency response H (e/?) that
is o real function of w?

7.13 Consider the cascade of two causal LTI systems: hj[n] = ad{n] + 88[n — 1] and han] = y”,u[u],l 8] < 1.
Determine the frequency response H (e/¢) of the overall system. For what values of a, Band y will |H(e/?)| = K,
where K is a real constant?
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7.14 The input-output relation of a nonlinear discrete-time system in the frequency domain s given by
Y () = X () el ), (7.157)

where 0 < o < | and X (/@) and Y (e/®) denote the DTFTs of the input and output sequences, respectively.
Determine the expression for its frequency response Hel®y = Y(e/¥)/ X (/). and show that it has zero phase.
The nonlinear algorithm described by Eq. (7.157) is known as the alpha-rooting method and has been used in image

enhancement [Jai89].

7.15 An FIR filter of length 3 is defined by a symmetric impulse response; i.e., h[0] = h{2]. Letthe input to this filter
be a sum of two cosine sequences of angular frequencies 0.3 rad/samples and 0.6 rad/samples, respectively. Determine
the impulse response coefficients so that the filter passes only the low-frequency component of the input.

7.16 (a) Design a length-5 FIR bandpass filter with an antisymmetric impulse responsc hn),ie, hin] =—hl4—n ],
0 < n < 4, satisfying the following magnitude response values: IH(ejO"’T)l =03and |H(ef0'6”ﬂ =0.8.

(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and
phase responses using MATLAB.

7.17 (a) Design a length-4 FIR highpass filter with an antisymmetric im ulse response hinl, ie. hn]l=—hi3 —nl.
0 < n < 3, satisfying the following magnitude response values: |H(efn"'3”)| =0.2and {H(e»'u"g”)l =0.8.
(b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and

phase responses using MATLAB.

7.18 An FIR filter of length 5 is defined by a symmetric impulse response; ie., hin]=hld4 —unl, 0 <n <4 Letthe
input to this filter be a sum of three cosine sequences of angular frequencies: 0.3 rad/samples, 0.5 rad/samples, and 0.8
rad/samples, respectively. Determine the impulse response coefficients so that the filter blocks only the midfrequency
component of the input.

7.19 The frequency response H (e4®) of a length-4 FIR filter with a real impulse response has the following specific

values: H(e!) =13, H(eJ3”"'4) = —3— j4, and H(ed™) = —3. Determine H(z).

7.20 The frequency response H (/@) of a length-4 FIR filter with & real and antisymmetric impulse response has the
following specific values: H(ed™)y =20 and H(el3”"4) — —5 — j5. Determine #(2).
7.21 Consider the two LTI causal digital filters with impulse responses given by

halnl = 0.58[n] — 8[n — 11+ 0.38[n — 21,

higinl = 0.58[n]+ 8[n — 1] +0.38[n — 21.

(a) Sketch the magnitude responses of the two filters and compare their characteristics. )
(b) Let i 4 [12] be the impulse response of a causal digital filter with a frequency response H(el®). Define another
digital filter whose impulse response heln] is given by

helnl = (=1)"halal, for all 5.

What is the relation between the frequency response Hc(ef“’) of this new filter and the frequency response Ha (el
of the parent filter?

7.22 We have shown that a real-coefficient FIR transfer function H(z) with a symmetric impulse response has a
lincar-phase response. As a result, the all-pole TIR transfer function G(z) = 1/H(2) will also have a lingar-phase
response. What are the practical difficulties in implementing G(z)? Justify your answer mathematically.

7.23 Prove Egs. (7.36) and (7.37) of the impulse response coefficients of a causal minimum-phase transfer function.
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7.24 Check the stability of each of the following causal IIR transfer functions. Ifthey are not stable, find a stable transfer
function with an identical magnitude function. Are there any other transfer functions having the same magnitude
response as those shown below?

L 2343:249-4.7 o 4:3 2:245:6
@ 5@ = Gomyirosaom © Ha0) = (1.5:74+37-5)(z7-03240.7)

7.25 The notch filter is used to suppress a particular sinusoidal component of frequency @, of an input signal x[n]
and has a transfer function with zeros at z = e*/®_ For each filter given below, (i) determine the notch frequency w,,
(ii) show the form of the corresponding sinusoidal sequence to be suppressed, and (iii) verify by computing the output
y[n] by convolution that in the steady state, y[n] = 0 when the sinusoidal sequence is applied at the input of the filter.
@HE@D=1—z""+272 ) Ha@) =1 - 082" + 772 () H3(z) = | — 1.6z~ + z—2.

7.26 Let Gy (z) and Gy (z) represent ideal lowpass and highpass filters with magnitude responses as sketched in
Figure P7.2(a). Determine the transfer functions Hy(z) = Yi(2)/ X (2) of the discrete-time system of Figure P7.2(b),
k=0,1,2,3, and sketch their magnitude responses.

7.27 Let Hy p(z) denote the transfer function of an ideal real coefficient lowpass filter with a cutoff frequency of w),.
Sketch the magnitude response of Hy p(—z), and show that it is a highpass filter. Determine the relation between
the cutoff frequency of this highpass filter in terms of wp and its impulse response in terms of the impulse response
Ity pln] of the parent lowpass filter.

7.28 Let Hy p(z) denote the transfer function of an ideal real coefficient lowpass filter having a cutoff frequency of
wp, with wp < 7/2. Consider the complex coefficient transfer function Hy p(el®z), where Wy < Wy < T — W,
Sketch its magnitude response for —n < w < w. What type of filter does it represent? Now consider the transfer
function G(z) = Hp p(e/“"z) + Hp p(e™/*2). Sketch its magnitude response for —7 < w < 7. Show that G(z) is
a real-coefficient bandpass filter with a passband centered at w,. Determine the width of its passband in terms of wp
and its impulse response g[#n] in terms of the impulse response iz p[#] of the parent lowpass filter.

7.29 Let Hp p(z) denote the transfer function of an ideal real coefficient lowpass filter with a cutoff frequency of
wp with 0 < wp < 7/3. Show that the transfer function F(z) = Hip(ed®z) + Hpple dwoy) + Hy p(z), where
Wy = T — wp, is a real-coefficient bandstop filter with the stopband centered at w, /2. Determine the width of its
stopband in terms of wp and its impulse response f[n] in terms of the impulse response /i, p[n] of the parent lowpass
filter.

|G (e )]
1
0 ! )
0 w4 w2 T
— G;(2) — Yy(2)
|Gute )|
| Gyl?) » Gylz) — YV ()
X(z)
GL(Zl} GH(Z) — Y5 (2)
I ]
OD T2 3pfd m @ —| G;{(z) [— Y3(2)
(@) (b)

Figure P7.2



4186 s Chapter 7: LTI Discrete-Time Systems in the Transform Domain

7.30 Show that the structure shown in Figure P7.3 implements the highpass filter of Problem 7.27.

731 Show that the structure shown in Figure P7.4 implements the bandpass filter of Problem 7.28.

2
— Iy pln]
4 cos(w,m) cos(w,)
2
—’?—‘ hLP[”] ‘@—’ _"’(%'_I > hLP[Hl »
-7 (-n" sin{,n) sin{w,n)
Figure P7.3 Figure P7.4

732 Let H(z) be an ideal real-coelficient lowpass filter with a cutofT at w,, where w, = m/M. Figure F7.5 shows
a single-input, M-output filter structure, called an M-band analysis filter bank, where Hi(z) = H(ze’fz"’k/M),
k=0,1,..., M — 1. Sketch the magnitude response of each filter, and describe the operation of the filter bank.

7.33 Consider a cascade of M sections of the first-order FIR lowpass filter of Eq. (7.64). Show that its 3-dB cutoff
frequency is given by Eq. (7.66).

734 Consider a cascade of M sections of the first-order FIR highpass filter of Eq. (7.67). Develop the expression for
its 3-dB cutoff frequency.

7.35 Verify that the value of o given by Eq. (7.73b) ensures that the transfer function Hy p(z) of Eq. (7.71) is stable.

» Hu(Z) =

— H(2) —

Y H

(2 —

LR )

I—P- I-IM'—I(Z} —

Figure P7.5

7.36 Show by trigonometric manipulation that Eq. (7.730) can be alternately expressed as

we l—a

tan (?) - (7.158)

Next show that the transfer function Hyp p(z) of Eq. (7.71) is stable for a value of  given by

_ 1 — tan{we/2)
"7 + tan(we/2)

(7.159)
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7.37 Design a first-order lowpass IIR digital filter for each of the following normalized 3-dB cutoft frequencies:
(a) 0.6 rad/samples, (b) 0.457.

7.38 Show that the 3-dB cutoff frequency w, of the first-order highpass IIR digital filter of Eq. (7.74) is given by
Eq. (7.73a).

7.39 Design a first-order highpass 1IR digital filter for each of the following normalized 3-dB cutoff frequencies:
(a) 0.6 rad/samples, (b) 0.557.

7.40 The following first-order IR transfer function has been proposed for clutter removal in MTI radars [Urk58]:

[ il

I
1=k
Determine the magnitude response of the above transfer function and show that it has a highpass response. Scale the

transfer function so that it has a 0-dB gain at @ = 7. Sketch the magnitude responses for k = 0.95, 0.9, and -0.5,
respectively.

H(z) =

7.41 Show that the center frequency w, and the 3-dB bandwidth By, of the second-order 1IR bandpass filter of
Eq. (7.75) are given by Eqs. (7.76) and (7.78), respectively.

7.42 Design a second-order bandpass IIR digital filter for each of the following specifications: (a) w, = 0.557, By, =
0.25m, (b) w, = 0.37, By = 0.37. )

743 Show that the notch frequency e, and the 3-dB notch bandwidth By, of the second-order IIR bandstop filter of
Eq. (7.80} are given by Egs. (7.76) and (7.78), respectively,

7.44 Design a second-order bandstop IR digital filter for each of the following specifications: (a) w, = 0.357, By =
0.2, (b) wy = 0.67, By, = 0.157.

7.45 Consider a cascade of K identical first-order lowpass digital filters with a transfer function given by Eq. (7.71).
Show that the coefficient o of the first-order section is related to the 3-dB cutoff frequency w, of the cascade according
to Eq. (7.84), with the parameter C given by Eq. (7.85).

7.46 Consider a cascade of K identical first-order highpass digital filters with a transfer function given by Eq. (7.74).
Express the coefficient a of the first-order section in terms of the 3-dB cutoff frequency e, of the cascade.

747 The filter structures shown in Figure P7.6, where A (z) is a stable first-order allpass filter, can be used as low-
frequency shelving filters in digital audio equalization [Z6197] (see Section 15.5.2). Determine the transfer function
of each structure.

.:‘11(:)

Ay ——

x[n) ¥l x[n] ]

(b)
Figure P7.6
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7.48 The filter structure shown in Figure P7.7(a), where A((z) is a stable first-order allpass filter, can be used as a
low-frequency shelving filler in digital audio equalization [Z&197] (see Section 15.5.2). Likewise, the filter structure
shown in Figure P7.7(b), where A () is a stable first-order allpass filter, can be used as a high-frequency shelving

filter in digital audio equalization [Z5197]. Determine the transfer function of each structure.

K l

-1 Ki2
@Al sl L A, @) PO D@

afn) —{ A 1(2)

(@) (b)
Figure P7.7

7.49 If H(z) is a bandpass filter with passband edges at wp| and wpa, and stopband edges at wy and wy2, with
wy] < Wp] < Wp2 < Wy2, what type of filter is H(—2)? Determine the locations of the bandedges of £(—z) in terms
of the bandedges of H(z).

7.50 Using the method of Problem 2?. develop the transfer function G g p(z) of a first-order [TR highpass filter from
the transfer function Hy p(z) of the first-order 1IR lowpass filter given by Eq. (7.71). Is it the same as that of the
highpass transfer function of Eq. (7.74)? If not, determine the location of its 3-dB cutoff frequency as a function of
the parameter «.

751 Let H(z) be an ideal lowpass filter with a cutoff frequency at /3. Sketch the magnitude responses of the
following systems: (a) H(zH, () H(DHE), © H(—z2)H(z), and (d) H()H(=2%).

7.52 Show that the amplitude response H (w) of Type 1 and Type 3 linear-phase FIR transfer functions is a periodic
function of w with a period 27 and the amplitude response H (w) of Type 2 and Type 4 linear-phase FIR transfer
functions is a periodic function of @ with a period 4.

7.53 A length-13 Type | real-coefficient FIR filter has the following zeros: 7} = 08,22 = —j, 23 = 2— 2,4 =
—0.5 + j0.3. (a) Determine the locations of the remaining zeros. (b) What is the transfer function M (z) of the filter?

7.54 A length-12 Type 2 real-coefficient FIR flter has the following zeros: z; = 3.1, 22 = =2+ j4,z3 = 0.8+ j0.4.
(a) Determine the locations of the remaining zeros. (b) What is the transfer function Hs(z) of the filter?

7.55 A length-13 Type 3 real-coefficient FIR filter has the following zeros: 21 = 0.1-70.599, 22 = —0.3+j04,23 =
2. (a) Determine the locations of the remaining zeros. (b) What is the transfer function H3(z) of the filter?

7.56 A length-12 Type 4 real-coefficient FIR filter has the following zeros: z; = 2.2+ j34, 22 = 0.6+ j09,:23=
—0.5. (a) Determine the locations of the remaining zeros. (b) What is the transfer function Hy(z) of the filter?

7.57 Let H(z) be a lowpass filter with unity passband magnitude, a passband edge at wp, and a stopband edge at wy,
as shown in Figure P7.8.

(a) Sketch the magnitude response of the digital filter G(z) = H(MYF|(z), where F| () is a lowpass filter with
unity passband magnitude, a passband edge at wp /M, and a stopband edge at (27 — wy )/ M. What are the bandedges
of G1(z)?

(b) Skeich the magnitude response of the digital filter G2(z) = H(zM)Fa(z), where Fa(z) is a bandpass filter
with unity passband magnitude, and with passband edges at (27 — wp)/M and (27 + wp)/M and stopband edges at
(21 —wy)/M and 2z + ws)/ M. respectively. What are the bandedges of G2(z)?
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| He jm)l

0 w,, G n

Figure P7.8

7.58 Show analytically that an FIR filter with a constant group delay must have either a symmetric or an antisymmetric
impulse response.

7.5% Let the first five impulse response samples of a causal linear-phase FIR filter be given by 4[0] = a, A[1] =
—b, I[2] = —c, h[3] =d, and [4] = e. Determine the remaining impulse response samples of the transfer function
of lowest order for each type of linear-phase filter.

7.60 The first five samples of the impulse response of an FIR filter H () are given by #[0] = 1, A[1] = -3, h[2] =
—4,1[3] = 6, and h[4] = 8. Determine the remaining impulse response samples of H (z) of lowest order for each
type of linear-phase filter. Using zplane, determine the zero locations for H(z) for each type of linear-phase filter.
Does H(z) have a zero at z = | and/or z = —17 Do the zeros on the unit circle appear in complex conjugate pairs?
Do the zeros not on the unit circle appear in mirror-image symmetry? Justify your answers.

7.61 Let H\(2), H2(z), H3(z), and Hy(z) be, respectively, Type 1, Type 2, Type 3, and Type 4 linear-phase FIR filters.
Are the following filters composed of a cascade of the above filters’ linear phase? If they are, what are their types?
(@) Ga(2) = H1(DH1(2),  (b) Gp(a) = H(2)Ha(2), () Gelz) = Hy(2)H3(2),
(d) Gyl2) = Hi () Ha(2), (&) Gel2) = Ha(2)Ha(z), (f) G r(z) = H3(z)H3(2),
(&) Gp(2) = Hy(2)Ha(2), () Gp(2) = Fa()H3(2), (D) Gy(2) = Ha(z) Hy(2).
7.62 Consider a linear-phase FIR transfer function given by H(z) = Fi(z)F>(z). Determine the factor Fa(z) of

lowest order for each of the following choices for Fl(z):
2

@ F1(z) =2.1-35z"1 442272, (b)) Fi() = 14452271 —2.0;-2 433,73,

7.63 Consider a causal FIR transfer function given by

N
H(iz) =K (1 +h1z7 w22 4 --+h[N]z—N) =K [Ja—xnzh, (7.160)

i=l
where K is a constant. The root moment of H(z) is defined by [Fot2001]

N
Sw=Y A'. lsm<N, (7.161)
i=0

where m is the degree of the moment. Prove the Newton Identities given by
S+ "8 — + h[2]18—2 + - +mh[m] = 0, l<m=<N, (7.162)

Note: The above identities can be iteratively solved for all ¥ root moments.
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7.64 Assume that the causal FIR transfer function H(z) of Eq. (7.160) has My roots {et;) inside the unit circle, and
Mg roots {B;) outside the unit circle, where My + Mg = N. We can thus rewrite F(2) as

My My
HE =K [[0—az ) [0 = giz™h = KGa(Gp@). (7.163)
i=l i=l
My
i=l

M,

5 (l—,B,-z._1 y is the maximum-phase

where G (2) = [ [ (1 —a,-z" } is the minimum-phase factorand Gg(z) = I
factor of H(z2).
(a) Show that the root moments of a H (2} with real coefficients are real.
(b) Show that the root moments of a minimum-phase H (z) decrease exponentially with increasing 1.

(c)If H (w) and 8 (w) denote, respectively, the amplitude and phase responses of H(z), show then [Fot2001]

: o ga _ gf
In H(w) =In(K1)}— Z —Lr—n—"ﬂ cos(imw), (7.164a)
m=]
oo s Sﬁ
O(w) = —wMg + Y ——"sin(maw), (7.164b)

m
m=1

where K| is an appropriate real constant, {55} are the root moments of the minimum-phase factor Gy (2), and [SE,”}

are the inverse root moments of the maximum-phase factor G g(2).
(d) Show that for the transfer function H (z) to have linear phase, it must have zeros located outside the unit circle,
and determine their number in relation to the number of zeros inside the unit circle.

7.65 (a) Show that the phase delay Tp(w) of the first-order allpass transfer function

dy +z7!

A(z) = ;
1) 4 dyz!

is given by 7p(w) = (1 —d)/( + dy) = & [Ste96].
(b} Design a first-order allpass filter with a phase delay of 8 = 0.5 sample and operating at a sampling rate of
20 kHz. Determine the error in samples at 1 kHz in the phase delay from its design value of 0.5 sample.

7.66 Consider the second-order ailpass transfer function

d +d12_l 4772
1 +diz=V +daz™?

Ax(z) =

If § denotes the desired low-frequency approximate value of the phase delay 7p(w) = —6(w)/w, show that [Fet72]

(2—5) _-&=9)
dy =2 ; dHEET ey
1+ (2461 +4)

7.67 Let G(z) be a causal stable nonminimum-phase transfer function, and let H(z) denote another causal stable
H(ef‘”)'. Show that G(z) = H(2)A(z), where A(z) is 2

transfer function that is minimum-phase with lG(ej“J)l =
stable causal allpass transfer function.
7.68 A typical transmission channel is characterized by a causal transfer function

(3z —2.1)(2 + 252+ 5)
(z — 0.65)(z + 0.48)

In order to correct for the magnitude distortion introduced by the channel on a signal passing through it, we wish to
connect a causal stable digital filter characterized by a transfer function G (2) at the receiving end. Determine G(z)-
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7.69 Let H (z) be a causal stable minimum-phase transfer function, and let G (z) denote another causal stable transfer
function that is nonminimum-phase with ‘G(ef“’)| = .H(ej“’)‘. If &i[n] and g[n] denote their respective impulse
responses, show that
() [glO]] = |#[01],
(b) Y% lale]l? < Y24 g IRLE]2.
7.70 Is the transfer function
2z4+3)dz -1
(z+0.4)(z—-0.6)
minimum-phase? If it is not minimum-phase, then construct a minimum-phase transfer function G(z) such that

H(z) =

‘G(ef‘”)[ = |H(ef‘“)’. Determine their corresponding unit sample responses, g[#] and i[n], forn = 0, 1, 2, 3, 4. For

what values of mr is 7, lgl#]]* bigger than 3 |f[m]]27

7.71 The following bandstop FIR transfer functions Hgg(z) have also been proposed for the recovery of vertical
details in the structure of Figure 7.30 employed for the separation of the luminance and the chrominance components
[Aca83], [Pri80], [Ros75]:
=29

(a) Hps(z) = ﬁ(l +27°)5

(b) Hps(z) = 15 (1 + 272 (=1 +6:72 — =%,
() Hgs(z) = 55 (1 + 272 (=3 + 14772 — 374,
Develop their delay-complementary transfer functions Hgp (z).

7.72 Let Ag(z) and A(z) be two causal stable allpass transfer functions. Define two causal stable IIR transfer
functions as follows:

Hy(z) = Ap(z) + Aj(2), Hi(z) = Aplz) — A1(2).
Show that the numerators of Hp(z) and H) (z) are, respectively, a symmetric and an antisymmetric polynomial.

7.73 Show that the two transfer functions of Eqs. (7.97a) and (7.97b) are a power-complementary pair.
7.74 Show that the two transfer functions of Eqs. (7.97a) and (7.97b) are each a BR function.

7.75 Consider the transfer function H (z) given by

1 M—1
H@) = ;0 Ak (2),

where Ay (z) are stable real-coefficient allpass functions. Show that H(z) is a BR function.

7.76 Show that the bandpass transfer function Hg p(z) of Eg. (7.77) and the bandstop transfer function Hpg(z) of
Eq. (7.80) form a doubly-complementary pair.

7.77 Show that the value of the gain function G(w) of a power-symmetric transfer function defined by Eq. (7.101) at
w = /2 is given by 10log;; K — 3 dB.

7.78 Consider the real-coefficient stable IIR transfer function H (z) = A()(z?‘) e Aq (z2), where Ap(z)and Aq(2)
are stable allpass transfer functions. Show that H (z) is a power-symmetric transfer function.

7.79 Show that -

—0.1 +0.5z7! +0.05272 +0.05:73 +0.5:~4 — 0.1z

H(z) =
(@) 1 +0.1z72 - 0.2:74

is a power-symmetric 1IR transfer function.
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7.80 Show that the Tallowing causal FIR transfer functions satisfy the power-symmetric condition:
@) Ho(z) =1 =2z + 452 46272 +274 40527,

(b) Hy(2 = 1+ h 7t a2 - e 422

7.81 Let H(z) = a(l + b:" ), where a and b are constants. Then H(;)H(:—l) is of the form cz -+ d + ez
Determine the condition on ¢ and d so that H(z2) is a power-symmetric FIR transfer function with K = 1. Show
that @ = /2 and b = 1 satisfy the power-symmetric condition. Determine two other possible sets of values for a
and b to ensure the power-symmetric condition. Using MATLAB, show that A(z) and G(z) = —: T H(=z7Y) are
power-complementary for the above values of the constants a and b.

7.82 Let H(z) = a(l + bz (1 + dyz7 + drz72%), where a, b, d|, and d arc constants. Then H(z)H(z~')is of
the form (cz-+d + ezl )[([2:2 +di(1+d)z+(1+ d‘?‘ -+ d:,?‘) +dy (1 dg)z" +dz:’2]. Determine the condition on
¢ and d in terms of dy and da so that H(z) isa power-symm_ctric FIR transfer function with K = 1. Ford| =dx = 1,
evaluate the constraint on ¢ and d, and vsing it, determine one realizable set of values for a and b. Using MATLAB,
show that H(z) and G(z) = —z=3H(—z!y are power-complementary for these values of the constants @ and b.
7.83 A setof M digital filters (G;(z)),i =0, 1,.... M —1,is defined to be magnitude-complementary of each other
if the sum of their magnitude responses is equal to a constant [Reg87c]; that is,

M-1 ]
Y Gy =p.  forallw, (7.165)
i=0

where f is a positive nonzero constant, Consider two real-coefficient doubly-complementary transfer functions Hp{z)

and H| (z) that are related according to Eqs. (7.97a) and (7.97b). Define Gp(z) = H&(z} and G(2) = —H]z(:). Show
that Gg(z) and G (z) are a pair of magnitude-complementary transfer functions.

7.84 Show analytically that the following causal FIR transfer functions are BR funclions:
@ H @ =4 (1+37"), (b)) = 7 (1-1.2:71),
ez )(1=pz!
(¢) Hy(s) = LEEEIOBE ) a >0, f>0,

(d) Hy(2) = (1 = 03711 +0.2:7H1 = 0527,

7.85 Show analytically that the following causal IIR transfer functions are BR functions:

— 2.6 4 2.6z b ) 1.6 — 1.627! L Hi 0.2¢1 —273)
H 1) =i—————4 T Jiieme =ty C )= 5
' 424 : 2 PR 3 | +04z—1 + 0872
4542:7 44572
() Hy(z) = .

54270 44272

7.86 If Aj(z) and A;(z) are two LBR functions, show that A1 (1/A2(2)) is also an LBR function.

7.87 Let G(z) be an LBR function of order N, Define

F(,,_-(M)
T\ +aGR))

where |a| < 1. Show that F(c) is also LBR. What is the order of F(z)? Develop a realization of G(z) in terms of

F(z).

7.88 If G(z) and A(z) are, respectively, a BR function and and an LBR function, show that G(1/A(z)) is a BR
function.
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7.89 Show analytically that each of the following pairs of transfer functions are doubly-complementary:

26(1+z71 1.6(1 —z~1)
Hi)= ———,G(5) = ———=,
= 7() 42+ 71 1 ;
Ql(l —z7= 09+4+04z7" +0.9;74
) HE@ = — o E ) Gy = e

| +0.4z=! 408z~ 14+04z71 408227

7.90 Determine analytically the power-complementary transfer function of each of the following BR transfer functions:
224+z71+2:7% 3+7.5z27 +7.5:72 4373

Yy B (b) Hy(z) = —1 -9 -3

S 2270 £ Bz B+8z7 4 4z7=+¢

(8) Ha(z} =

7.91 Verify the relations between the transfer parameters and the chain parameters of a two-pair given in Eqs. (7.128a)
and (7.128b).

7.92 A two-pair is said to be reciprocal if t12 = ty| [Mit73b]. Show that for a reciprocal two-pair, AD — BC = 1.

7.93 Consider the I'-cascade of Figure P7.9(a), where the two two-pairs are described by the transfer matrices

[k =gt [k -kt
Tl—.[ 1 —klz_l ' = 1 —kgz_[ '

Determine the transfer matrix of the cascade.

7.94 Consider the t-cascade of Figure P7.9(b), where the two two-pairs are described by the chain matrices

(1 k! 1 koz™
r= = = ¢
' ky ozl ]' g I: S :|

Determine the chain matrix of the cascade.

X — — -y, X, — - ¥,
T Tz I T,
Y+ - Xy Xy ] — >
(a) (b)
Figure P7.9

1.95 Determine the transfer parameters and the chain parameters of the digital two-pairs of Figure P7.10.

k”:
X T g ) % o H— 1,

.9
Ky
l o =X ¥ (e E}‘— X2
(a) (b)

Figure P7.10
7.96 A transfer function H (z) is realized in the form of Figure 7.37, where the constraining transfer function is given
by G(z). If the relation between H (z) and G(z) is of the form
H(zZ) — ki
Z_l“ —km H(2)] '

determine the transfer matrix and the chain matrix parameters of the two-pair of Figure 7.37.

G(z) =
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7.97 A transfer function H (z) is realized in the form of Figure 7.37, where the constraining transfer function is given
by G(z). The relation between H(z) and G{z) is of the form

o+ G

Hiz = —————
(=) | +az"1G(2)

with e real and || < 1.
(1) Determine the chain parameters of the two-pair of Figure 7.37.
(0 If|Gi)] < 1 for|z| =1, show that | H (z)| cannot have a maximum value greater than unity.

7.98 Determine chain parameters of the cascade of three lattice two-pairs of Figure P7.11. Using these chain param-
eters, determine the expression for the transfer function A3(2).

Figure P7.11

7.99 Derive the inequality of Eq. (7.141).

7.100 Determine by inspection which one of the following second-order polynomials has both roots inside the unit
circle:

) Dl = 44851 4872, (B IG)= e
© De(z) =3 +4z~ =472, (@ Dgla)=3— 0571 -7
7.101 Test analytically the BIBO stability of the following causal IIR transfer functions:
2:2 4+3.75z 4 10 0.1z2 - 057z — 1.78
a) Ho(2) = b i 1 b) Hp(2) = ,
(@) Halz) = 3 07522 + 0.5z +-0.25 B Hyl&) = 33 07 — 2 |

873 — 155322 433024125 gy |
3z4 +223 +22% + l1.5;, -05 " T A

(c) He(2) =

C)H)(:: =i
(e} Hel2) 10+7z-1 +5z-2 433 +274 427

7.102 Determine analytically whether all roots of the following polynemials are inside the unit circle:

(@) Da(z) = 10+ 8~} + 6272 +4273 42574+ Pt
(b) Dp(z) =4z + 35:4 4373 4252 +22 -1

7.12 MarLas Exercises
M 7.1 Write &« MATLAB program to simulate the filter designed in Problem 7.15, and verify its filtering operation.

M 7.2 Write 1 MATLAR program to simulate the filter designed in Problem 7.18, and verify its filtering operation.

M 7.3 The following third-order 1IR transfer function has been proposed for clutter rejection in MTI radar [Whi58]:
e
H(z)= gy = =
(1—04z71)(1 —0.88z~ ! 4-0.61z7-)

Using MATLAB, determine and plot its gain response, and show that it has a highpass response.
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M 7.4 Show that for each case listed below, H (z) and H(—z) are power-complementary.
1 -2z +35z72 #3573 2,74 4 -5
§—2:"2 -4

1+ 1527 +5.25:72 4+ 7.25:73 4£.7.25:74 + 52575 4+ 15276 4 27
12+ 1322 4457 £ 0.5;-6 '
To verily the power-complementary property, write a MATLAB program to evaluate H (z) H (2= D4+ H(—z)H (=7 ),
and show that this expression is equal to unity for each of the transfer functions given above.

(0) H{z) =

1

by H(z) =

M 7.5 Plot the magnitude and phase responses of the causal IR digital transfer function

0.2031(1 —z~H(1 — 0274271 + 72

H(z) = — -~ =
(1+0.2695z=1)(1 +0.4100;~1 + 0.67582-2)

What type of filter does this transfer function represent? Determine the difference equation representation of the above
transfer function.

M 7.6 Plot the magnitude and phase responses of the causal IR digital transfer function

0.2031(1 — z=1)(1 — 0.2743;~1 + 272

H(z) = e ) - —5=
(14-0.1532z71 +0.8351z72)(1 +0.487z~! 4+ 0.84z-2)

What type of filter does this transfer function represent? Determine the difference equation representation of the above
transfer function.

M 7.7 Design an FIR lowpass filter with a 3-dB cutoff frequency at 0.457 using a cascade of five first-order lowpass
filters of Eq. (7.71). Plot its gain response.

M 7.8 Using the result of Problem 7.46, design an FIR highpass filter with a 3-dB cutoff frequency at 0.4 using a
cascade of six first-order highpass filters of Eq. (7.74). Plot its gain response.

M 7.9 Design a first-order IR lowpass and a first-order [IR highpass filter with a 3-dB cutoff frequency of 0.67.
Using MATLAB, plot their magnitude responses on the same figure. Using MATLAB, show that these filters are both
allpass-complementary and power-complementary.

M 7.10 Design a second-order IIR bandpass and a second-order ITR notch filter with a center (notch) frequency
wp = 0.4 and a 3-dB bandwidth By (notch width) of 0.25. Using MATLAB, plot their magnitude responses on
the same figure. Using MATLAB, show that these filters are both allpass-complementary and power-complementary.

M 7.11 Design a stable second-order IIR bandpass filter with a center frequency at 0.6 and a 3-dB bandwidth of
0.27. Plot its gain response.

M 7.12 Design a stable second-order IIR notch filter with a center frequency at 0.6 and a 3-dB bandwidth of 0.2,
Plot its gain response.

M7.13 Using MATLAB, show that the transfer function pairs of Exercises M7.11 and M7.12 are bath allpass-
complementary and power-complementary.

M 7.14 Using MATLAB, show that the transfer function pairs of Problem 7.89 are doubly-complementary.
M 7.15 Develop the pole-zero plots of the transfer functions of Problem 7.90 using the function zplane of MATLAB,

and show that they are stable. Next, plot the magnitude response of each transfer function using MATLAB, and show
that it satisfies the bounded real property.
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M 7.16 Using MATLAB, determine the power-complementary (ransfer function of each of the transfer functions of
Problem 7.90.

M 7.17 Develop the pole-zero plots of the transfer functions of Problem 7.101 using the function zplane of MATLAB,
and then test their stability.

M 7.18 Using Program 72, test the stability of the transfer functions of Problem 7.101.

M 7.19 Using Program 72, determine whether the roots of the polynomials of Problem 7.102 are inside the unit circle
or not.

M 7.20 The FIR digital filter structure of Figure P7.12 is used for aperture correction in television to compensate for
high-frequency losses [Dre90]. A cascade of two such circuits is used, with one correcting the vertical aperture and
the other correcting the hotizontal aperture. In the former case, the delay -~ is a line delay, whereas in the latter case,
it is 70 ns for the CCIR standard, and the weighting factor provides an adjustable amount of correction. Determine
the transfer function of this circuit, and plot its magnitude response using MATLAB for two different values of k.

vl Corrected
. output
Correction

signal

Figure P7.12

M 7.21 Animproved aperture correction circuit for digital television is the FIR digital filter structure of Figure P7.13,
where the delay == {5 70 ns for the CCIR standard, and the two weighting factors ky and ky provide an adjustable
amount of correction with ky > Oand ks < 0 [DreS0]. Determine the transfer function of this circuit, and plot its

magnitude response using MATLAB for two different values of ky and ka.

‘In-band'
h.f. signal

'In-band’
. correction
signal

y[n) Corrected

output
x|l ; 2
input . 'Out-of-band’
* correction

signal

‘Out-of-band’
h.f. signal

Figure P7.13





