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for | < € < M. The allpass delay equalizer design can be formulated as a minimax optimization problem
in which we minimize the peak absolute value of the error

Elw) = Toverll (W) — Ty, (9.54)

in the passband of the filter. The adjustable parameters in the optimization procedure are the desired delay
7, and the coefficients o ¢. d) ¢ of the allpass transfer function [Cha80].

The M-file iirgrpdelay can be used to design the allpass delay equalizer which is availble with
several versions. We illustrate its use in Example 9.17.

EXAMPLE 9.17 Delay Equalizer Design Using MATLAB

We design an allpass section of eighth order to equalize group delay in the passband of a fourth-order elliptic
lowpass filter with a passhand edge at 0.37, passband ripple of | dB and a minimum stopband attenuation of 30 dB.
To this end. we make use of Program 9 4. The group delays of the lowpass filter and the overall cascade are shown
in Figure 7.8. The numerator and the denominator coefficients of the allpass section are given in num and den.
It can be shown using the statement poly2rc (den) that the designed allpass is a stable transfer function as all
eight reflection coefficients are of magnitude less than 1.

9.8 Summary

The digital filter design problem is concerned with the development of a suitable transfer function meeting
the frequency response specifications, which, in this chapter, is restricted to magnitude (or, equivalently,
gain) response specifications. These specifications are usually given in terms of the desired passband
edge and stopband edge frequencies and the allowable deviations from the desired passband and stopband
magnitude (gain) levels. This chapter considered the design of causal, stable infinite impulse response
(IIR) digital filters.

[IR filter design is usually carried out by transforming a prototype analog transfer function by means
of a suitable mapping of the complex frequency variable s into the complex variable z. The widely used
bilinear transform method, discussed in this chapter, is based on this approach.

The chapter then discusses some of the algorithms for the design of IIR digital filters that are available
in the Signal Processing Toolbox of MATLARB as functions. In particular, it includes the design of IIR digital
filters with Butterworth, Chebyshev, and elliptic magnitude responses.

Finally, the chapter reviews the basic idea behind the design of IIR digital filters using computer-
aided iterative techniques and outlines a specific application of this approach to the design of group delay
equalizers.

9.9 Problems

9.1 Determine the peak ripple values 8, and 8, for each of the following sets of peak passband ripple «, and minimum
stopband attenuation w:
() ap =021dB, @y =53dB, (b)a,=0.17dB, a; =78dB.

9.2 Determine the peak passband ripple o) and minimum stopband attenuation g in dB for each of the following
sets of peak ripple values §,, and dy:
(a)dp =0.02, 8 =0.03, (b)sp =0055 & =0.033.

9.3 Let H(z) be the transter function of a lowpass digital filter with a passband edge at e, stopband edge at wy,
passband ripple of §;,, and stopband ripple of &;, as indicated in Figure 9.1. Consider a cascade of two identical filters
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with a transfer function #(2). What are the passband and stopband ripples of the cascade at wp and wy, respectively?
Generalize the results for a cascade of M identical sections.

9.4 Let H; p(2) denote the transfer function of a real-coefficient lowpass filter with a passband edge at w,, stopband
edge at wy, passband ripple of §,, and stopband ripple of §;, as indicated in Figure 9.1. Sketch the magnitude response
of the highpass transfer function Hy p(—z) for = < w < m, and determine its passband and stopband edges in terms
of wp and wy.

9.5 Consider the transfer function G(z) = Hp p(ef®2), where Hy p(z) is the lowpass transfer function of Prob-
lem 9.4. Sketch its magnitude response for — < w <, and determine its passband and stopband edge frequencies
in terms of wy, wy, and wy.

9.6 The impulse invariance method is another approach to the design of a causal 1IR digital filter G(z) based on the
transformation of a prototype causal analog transfer function Hy (s). If hi, () is the impulse response of H, (s), in the
impulse invariance method, we require that the unit sample response g[n] of G(z) be given by the sampled version of
hg (1) sampled at uniform intervals of T seconds; that is,

el =h,(nT), n=0,12,....
(a) Show that G(z) and H, (s) are related through

G(z) = Z{gnll = Z{h,(nT))

i = 2k .
== Y Hyls+] ; (9.55)
r = T Jls=(1/T)inz
(b) Show that the transformation
1
§=—=Ing, 9.36
5 T n ( )

has the desirable properties enumerated in Section 9.1.3.

(c) Develop the condition under which the frequency response G(e/®) of G(z) will be a scaled replica of the
frequency response H, (j2) of Hy(s).

(d) Show that the normalized digital angular frequency o is related to the analog angular frequency £ as

w=T. (9.57)

9.7 Show that the digital transfer function G(z) obtained from an arbitrary rational analog transfer function Hy(s)
with simple poles via the impulse invariance method is given by

G(z)= »_  Residues [—HL“)——] (9.58)

— asT =1
all poles of I 54
Ha(s)

9.8 Using Eq. (9.58), develop the expression for the causal digital transfer function G(z) obtained from the causal
analog transfer function H(s) = A/(s + o) via the impulse invariance method.

9.9 Determine the digital transfer functions obtained by transforming the following causal analog transfer functions
using the impulse invariance method. Assume 7 = (.3 sec.
4354+ 7) 852 -+ 375 + 56 s34 52465+ 14
5 —. (b) Hyls) = — , (e) Hels) = — P -
(s +2){(s= +4s + 5) (5= +2y+10)(s +4) (5° 4+ 25 +5)(s= +5+4)

(a) Hy(s) =
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9.10 The following causal IR digital transfer functions were designed using the impulse invariance method with
T — 0.2 sec. Determine their respective parent causal analog transfer functions.
p j

3z 4z ze~125in(1.5)
—— , (b Gplz) =
: +.z =i LA 2 —2ze12cos(1.5) + e

(a) Ga(2) = - 47

9.11 The following causal IIR digital transfer functions were designed using the bilinear transformation method with
T = 0.5. Determine their respective parent causal analog transfer functions.

M2 3244 5473 +62:2 4262 + 18
—(—'7—3——_' (b) Gp(z) = — 3 :
10:2 + 4246 (3z+ (1227 — 4z +8)

(a) Galz) =

9.12 An [IR digital lowpass filter is to be designed by transforming an analog lowpass filter with a passband edge
frequency F at 0.45 klz using the impulse invariance method with T = 0.3 ms. What is the normalized passband
edge angular frequency wp, of the digital filter if there is no aliasing? What would be the normalized passband edge
angular frequency wp, of the digital filter if it is designed using the bilinear transformation with T = 0.3 ms?

9.13 An IIR lowpass digital filter has a normalized passband edge frequency w = 0.567. What is the passband edge
frequency in Hz of the prototype analog lowpass filter if the digital filter has been designed using the impulse invariance
method with T = 0.2 ms? What is the passband edge frequency in Hz of the prototype analog lowpass filter if the
digital filter has been designed using the bilinear ransformation method with 7' = 0.2 ms?

9.14 Design an IIR lowpass digital filter G (z) with a maximally llat magnitude response and meeting the specifications
given by Egs. (9.34a) and (9.34b) using the impulse invariance method. How does this filler compare with that designed
vin the bilinear transformation method in Section 9.27

9.15 An LTI continuous-time system described by u linear constant coefficient differential equation is often solved
numerically by developing an equivalent linear constant coefficient difference equation by replacing the derivative
operators in the differential equation by their approximate difference cquation representation. A commonly used
difference equation representation of the first derivative at time t = 17T is given by

d y(t)
dt r=nT

= _'J]r_‘.(yl”] —y[n— 1,

where T is the sampling period and y[r] = v(nT). The corresponding mapping from the s-domain to the z-domain
is obtained by replacing s with the backward difference operator .}—.(1 — z—1). Investigate the above mapping and its

properties. Does a stable H, (s) result in a stable H (z)? How useful is this mapping for digital filter design?

9.16 This problem illustrates how aliasing can be suitably exploited in order to realize interesting frequency response
characteristics. An ideal causal analog lowpass filter with an impulse response 1, (1) has a frequency responsc given
by

2] < Q,

. L
Ha(j8) = {0, otherwise.

Let H(e/®) and Ha(el®) be the frequency responses of digital filters obtained by sampling /iq(r) at { = nT,
where 1" = 37 /2, and 7/ Q, respectively. Assume the transfer functions are later normalized so that H| (/) =
Hy(ed%) = 1.

{a) Sketch the frequency responses G (¢/®) and G2 (e/®) of the two digital filter structures shown in Figure P9.1.

(b) What type of filters are G(z) und G2(z) (lowpass, highpass, etc.)?
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H(z) T H,(2)
H,(2) ja_’ Hq(2) 1
Gy(2) G(2) i

Figure PY.1

9.17 Let H,(s) be a real-coefficient causal and stable analog transfer function with a magnitude response bounded
above by unity. Show that the digital transfer function G (z) obtained by a bilinear transformation of H,(s) is a BR
function.

9.18 We have shown in Section 8.7.2 that the transfer function G(z) of a second-order IIR notch filter as given in
Eq. (9.32) can be expressed in the form G(z) = %I 1 -+ A2(2)], where A3(z) is a second-order allpass transfer function
given by Eq. (8.66). Consider a notch filter with a notch frequency at @ = /2. Show that a notch filter with
multiple notch frequencies is obtained if z =1 is replaced with =¥ [Reg88]. What are the locations of the new notch
frequencies?

9.19 A notch filter with N notch frequencies can be realized by replacing the allpass filter A-(z) in Problem 9.18
with a cascade of & second-order allpass filters [Jos99]. In this problem, we consider the design of a notch filter
with two notch frequencies |, w3, and corresponding 3-dB notch bandwidths By, B2. We thus replace A2 (z) with a
fourth-order allpass transfer function A4(z),

@ —pi+epzt+272 ar — far(l +ax)r™ 4z
Ayz) = — — L 3.
I=p10+epe™ +o1z77 J \ 1 = fall +a2)z™! +aaz

(38

obtained by cascading two second-order allpass filters. The constants ¢ and @ are chosen as

_ I —tan(B;/2)

=—, =12
1 +tan(B;/2)

o

The transfer function of the modified structure is now given by H(z) = %[1 + Ag(z2)] = N(z)/D(z).

(a) Show that N(z) is a mirror-image polynomial of the form a(l + blz_l =+ 1)2:_2 -+ b]z_3 -+ :"4), and express
the constants b and by in terms of the coefficients of A4(z).

(b) Show thata = (1 + ajap)/2.

(¢) By setting N(e/“) = 0, = 1, 2, solve for the constants b and b in terms of @| and wy. From the equations
in Parts (a) and (b), determine the expressions for the coefficients 8] and 5.

(d) Using the design equations derived above, design a double notch filter with the following specifications:
w) = 0.2, w3 = 0.6, B = 0.27, and By = 0.25x. Using MATLAB, plot the magnitude response of the designed
notch filter.

9.20 Let Hy p(2) be an IIR lowpass transfer function with a zero (pole) at z = z. Let Hp(Z) denote the lowpass
transter function obtained by applying the lowpass-to-lowpass transformation given in Table 9.1, which moves the
zero {(pole) at z = z; of Hy p(z) to a new location at ¥ = Z;. Express 7; in terms of zz. If Hy p(z) has a zero at
2= —1, show that Hp(Z) also has a zero at z = —1.

9.21 Let Hy p(z) be an IIR lowpass transfer function with a zero (pole) at z = z;. Let Hp(Z) denote the bandpass
transfer function obtained by applying the lowpass-to-bandpass transformation given in Table 9.1, which moves the
zero (pole) at z = zx of Hy p(z) to a new location at £ = Z;. Express Z; in terms of zi. If Hy p(z) has a zero at
2= —1, show that Hp(Z) also has a zero at z = 1.
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9.22 A second-order lowpass IR digital filter with a 3-dB cutolf [requency at we = 0.557 hus a transfer function

e s 0.3404(1 +:27"° (9.59)
n(Z) = . T = .

L | 3 0.1842:71 +0.1776: 77

Design a second-order lowpass filier Hy p(2) witha 3.dB cutolf frequency at & = 0.427 by transforming the above

lowpass Lransfer function using a lowpass-to-lowpass spectral (ransformation. Using MATLAB, plot the gain responses

of the two lowpass filters on the same figure.

9.23 Design a second-order highpass filter Hpy p (=) with a 3-dB cutoff [requency at @y = 0477 by transforming the
lowpass transfer function of Eq. (9.59) using & Jowpass-to-highpass spectral (ransformation. Using MATLAB, plot the
gain responses of the highpass and the lowpass filters on the same figure.

9.24 A second-order lowpass Type 7 Chebyshev 1R digital filter G p(z) with a minimum attenuation of 20-dB at
we = 0.36m has a transfer function

0.1944(1 +0.9802z~" +:72)

Gy pl)= e ey 9.60
L) = T 016! - 0.281272 260

Designa fourth-order bundpass filter Hp p(2) with o center frequency at ¢ = 0.417 by transforming the above lowpass
(ransfer function using a lowpass-to-bandpass spectral transformation. Using MATLAB, plot the gain responses of the
lowpass and the bandpass filters on the same figure.

0.25 A third-order elliptic highpass filter with a passband edge at @p = .52 has a transfer function

0.2397(1 — 1.5858:7" + (5858272 —z7%)

B iy R N 2 e 9.61
HP(E) = 035721 4 07439272 +0.179: 72 (]

Design a highpass filter Hy p(2) with a passband edge at wp = 0.457 by transforming the above highpass transfer
function using the lowpass-to-lowpass spectral transformation. Using MATLAB, plot the gain responses of the two
highpass filters on the same figure.

9.26 Design a second-order bandpass filter with a center frequency al @y = 0,57 by transforming the bandpass
transfer function of Eq. (7.79) using the lowpass-to-lowpass spectral transformation. Using MATLAB, plot the gain
responses of the two bundpass filters on the same figure.

9.27 Design a second-order notch filier operating at a sampling rate of 400 Hz with a notch frequency at 80 Hz and
a 3-dB bandwidth of 5 Hz. By applying the lowpass-to-lowpass spectral transformation to this filter. design a noich
filter with a notch frequency at 50 Hz. Using MATLAB, plot the aain responses of the two notch filters on the same
figure.

9.28 Design a lowpass filter with a cutoff at wp = 0.457 by transforming the highpass transfer function of Eq. (9.61)
using the lowpass-to-highpass spectral transformation. Using MATLAB, plot the gain responses of the highpass and
the lowpass filters on the same figure.

9.29 A maximally flat group delay 1IR allpass filter can be designed Lo approximate i fractional delay ~D:

_D dy -I—dN_lz'] +~-+a’1:—‘N*”+ 5N

L e e L o

| +dpz™! +ez2 ewmendpe th gl g =b +dyz=N

1

By expressing the desired positive delay as D =N+8, where Visa posilive integer and § a fractional number, it
can be shown that the coefticient (el } of the allpass filter is given by [Fel71]

N
) D—-N-+n
k NI| 1
dk:(—])ck ()D-N-l-k—%—n!
n=
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where C;:,V = N/ENN — k)!is a binomial coefficient. Design an allpass fractional delay filter of order 11 with a
delay of 90/13 samples. Plot using MATLAB, the group delay response of the designed filter along with that of the
ideal fractional delay filter. Comment on your results,

9.30 The desired frequency response of an ideal integrator is given by

Hinl(e“rw) — L ‘ (9.62)
Jw
Determine the transfer function H g (z) of an IR integrator derived via the rectangular numerical integration method
given by Eq. (2.141) and the transfer function Hy(z) of an IIR integrator derived via the trapezoidal numerical
integration method given by Eq. (2.119). Using MATLAB, plot the magnitude responses of Hin(z), Hg(z), and
Hp(2) for T = 1. Comment on your results.

9.31 Animproved IIR digital integrator can be obtained by interpolating the rectangular and the trapezoidal integrators
according to [Ala93]

Hy(z) = %H.rc (=) + éHT(:).
Using MATLAB, plot the magnitude responses of Hy(z), Hg(z), and Hr(z) for T = 1. Comment on your results.

9.32 Develop an IIR digital differentiator by inverting the IIR digital integrator of Problem 9.31 [Ala93]. Is this a
stable transfer function? If not, develop a stable equivalent. Using MATLAB, plot the magnitude responses of the
ideal differentiator and the digital differentiator designed here. Comment on your results.

9.10 MartLaB Exercises

Design a digital Butterworth lowpass filter operating at a sampling rate of 100 kHz with a 0.4-dB cutoff
frequency at 10 kHz and a minimum stopband attenuation of 50 dB at 30 kHz using the bilinear transformation
method. Determine the order of the analog filter prototype using the formula given in Eq. (4.35), and then design
the analog prototype filter using the M-file buttap of MATLAB. Transform the analog filter transfer function to
the desired digital transfer function using the M-file bilinear. Plot the gain and phase responses using MATLAE.
Show all steps used in the design.

@Mndify Program 9 3 to design a digital Butterworth lowpass filter using the bilinear transformation method.

Ireinput data required by the modified program should be the desired passband and stopband edges and maximum
passband deviation and the minimum stopband attenuation in dB. Using the modified program, design the digital
Butterworth lowpass filter of Exercise M9.1.

M 9.3 Design a digital filter by an impulse invariant transformation of a fifth-order analog Bessel transfer function Program 9 3.m
for the following values of sampling frequencies: (a) Fr = 1 Hz and (b) Fr = 2 Hz. Plot the gain and the group

delay responses of both designs using MATLAB, and compare these responses with that of the original Bessel transfer

function. Comment on your results.

AM 9.4 Using the M-file impinvar, design the digital Butterworth lowpass filter of Exercise M9.1. Use the analog
prototype filter order determined using the formula given in Eq. (4.35).

M 9.5 Design a digital Type | Chebyshev lowpass filter operating at a sampling rate of 100 kHz with a passband
edge frequency at 10 kHz, a passband ripple of 0.4 dB, and a minimum stopband attenuation of 50 dB at 30 kHz
using the impulse invariance method and the bilinear transformation method. Determine the order of the analog filter
prototype using the formula given in Eq. (4.43), and then design the analog prototype filter using the M-file cheblap
of MATLAB. Transform the analog filter transfer function to the desired digital transfer function using the M-file
bilinear. Plot the gain and phase responses of both designs using MATLAB. Compare the perfprmances of the
two filters. Show all steps used in the design.
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"odify Program 92 to design a digital Type | Chebyshev lowpass filter using the bilinear transformation
m

Sethiod. The input data required by the modified program should be the desired passband and stopband edges and
maximum passband deviation and the minimum stopband attenuation in dB. Using the modified program, design the
digital Type 1 Chebyshev Jowpass filter of Exercise M9.5.

M 9.7 Using the M-file impinvar, write a MATLAB program Lo design a digital Type | Chebyshey lowpass filter
using the impulse invariance method. The input data required by the modified program should be the desired passband
and stopband edges and maximum passband deviation and the minimum stopband attenuation in dB. Using your
program, design the digital Type | Chebyshev lowpass filter of Exercise M9.5.

M 9.8 Design a digital elliptic lowpass filter operating at a sampling rate of 100 kHz with a passband edge frequency
at 10 kHz, a stopband edge frequency at 30 kHz, passband ripple of 0.4 dB, and a stopband ripple of 50 dB using
the impulse invariance method and the bilinear transformation method. Determine the order of the analog filier
prototype using the formula given in Eq. (4.54), and then design the analog prototype filter using the M-file el1lipap
of MaTLAB. Transform the analog filter transfer function to the desired digital transfer function using the M-file
bilinear. Plot the gain and phase responses of both designs using MATLAB. Compare the performances of the
two filters. Show all steps used in the design.

M 9.9 Modify Program 9.3 to design a digital elliptic lowpass filter using the bilincar transformation method. The
input data required by the modified program should be the desired passband and stopband edges and the maximum
passband deviation and the minimum stopband attenuation in dB. Using the modified program, design the digital
elliptic lowpass filter of Exercise M9.8.

/@ Using the bilinear transformation method, designa digital Butterworth highpass filter operating ata sampling

rate of 1.5 MHz with the following specifications: passband edge at 600 kHz, stopband edge at 210 kHz, peak passband
ripple of 0.4 dB, and minimum stopband attenuation of 45 dB. (a) What are the specifications of the analog highpass
filter? (b) What are the specifications of the analog prototype lowpass filter? (c) Show all pertinent transfer functions.
Plot the gain responses of the prototype analog lowpass filter, analog highpass filter, and desired digital highpass filter.
Show all steps.

7 VI 9 Using the bilinear transformation method, design a digital Type 1 Chebyshev bandpass filter operating at a

sampling rate of 9 kHz with the following specifications: passband edges at 1.2 kHz and 2.2 kHz, stopband edges at
650 Hz and 3 kHz, peak passband ripple of 0.8 dB, and minimum stopband attenuation of 31 dB. (a) What are the
specifications of the analog bandpass filter? (b) What are the specifications of the analog prototype lowpass filter?
{c) Show all pertinent transfer functions. Plot the gain responses of the prototype analog lowpass filter, the analog
bandpass filter, and desired digital bandpass filter. Show all steps.

.--@Using the bilinear transformation methad, design a digital elliptic bandstop filter operating ut a sampling rate

of 8 kHz with the following specifications: passband edges at 0.9 kHz and 2.1 kHz, stopband edges at 0.6 kHz and
3 kHz, peak passband ripple of 1.5 dB, and minimum stopband attenuation of 30 dB. (a) What are the specifications
of the analog bandstop filter? (b) What are the specifications of the analog prototype lowpass fitter? (c) Show all
pertinent transfer functions. Plot the gain responses of the prototype analog lowpass filter, the analog bandstop filter,
and desired digital bandstop filter. Show all steps.

M 9.13 Using the M-file iirgrpdelay, design an allpass section 10 equalize group delay in the passband of the
Type | Chebyshev ITR highpass filter of Example 9.15.

M 9.14 Using the M-file iirgrpdelay, design an allpass section to equalize group delay in the passband of the
Butterworth 1R bandpass filter of Example 9.16.





