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3.2 The Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of a discrete-time sequence x[n] is a representation of the
sequence in terms of the complex exponential sequence {¢/“"}, where w is the real frequency variable.
If there is no ambiguity, for brevity often the discrete-time Fourier transform is called simply the Fourier
transform (FT). The Fourier transform representation of a sequence, if it exists, is unique, and the original
sequence can be computed from its transform representation by an inverse transform operation. We first
define the forward transform and derive its inverse transform. We then describe the condition for its
existence and review its important properties.

The discrete-time Fourier transform X (/) of a sequence x[n] is defined by
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. the analysis equation,



FHX () . synthesis -
— 1 T synthesis equation,

— xn)=— [ X(e/*)e!*" du, (3.16)

21 Jn
called the inverse discrete-time Fourier transform. It should be noted that even though the integration in
Eq. (3.16) can be carried out over any interval of duration 27, it is a common practice to choose the interval
[—m, m]. The inverse discrete-time Fourier transform given by Eq. (3.16) can be interpreted as a linear
combination of infinitesimally small complex exponential signals of the form ». 7 el dyw, weighted by the

complex constant X (e/%) over the angular frequency range from —7 to .

to denote the X (/%) of the sequence x[rn]. Likewise, we shall use the operator syrhbol

ExeD

to denote the inverse Fourier transform x[n] of the transform X (e7?). A discrete-time Fourier transform
pair will be denoted as

x[n] *(-f—> X(ej"’). G.17)
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Table 3.3: Commonly used discrete-time Fourier transform pairs.
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33 Discrete-Time Fourier Transform Theorems

There are a number of important theorems of the discrete-time Fourier transform that are useful in dig-
ital signal processing applications. These theorems can be used to determine the Fourier transforms of
sequences obtained by combining sequences with known transforms. We review these theorems in this
section. For compactness, the theorems are stated using the operator notation introduced in Eq. (3.17),
and we shall make use of the following Fourier transform pairs:

(3.56a)
(3.56b)

The proofs of most of the theorems given here are quite straightforward and are left as exercises.



Convolution Theorem

The Fourier transform Y {¢/%) of the convolution sum of two sequences, y[n] = g[n]®h[n], is given by
the product of their Fourier transforms G(e/?)H(e/*); that is,
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Figure 3.9: Linear convolution using the discrete-time Fourier transform.



Modulation Theorem

The Fourier transform ¥ (e/%) of the product of two sequences given by y(n] = glnh[n] is given by the

cs given 0y J17) = 61"
convlution ntegalofthir Fourie transforms 5 [ G(e/*)H(e/* )) db; that i,
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g(nlh[n] = —

(3.66)
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The modulation theorem plays a key role in the ampli ' me used in digital com-
munications{ The modulation theorem is also known as the windowing rhearemi One application of this
theorem, to be considered later in Section K).2, is in the design of linear-phase FIR filter based on the
windowing of the impulse response of an ideal linear-phase filter with a doubly-infinite impulse response.




Linearity Theorem

Consider a sequence x[n] = ag(n] + Bhln] obtained by a linear combination of g{n) and h[n], where «

and f are arbitrary constants. The Fourier transform X (e/*) of x[n] is then given by aG(e/*) + BH (e/®);
that is,

« gln] + B h[n] <> a G(e/®) + BH(®). (3.57)

It should be noted that the Fourier transforms of the conju gate-symmetric and conjugate-antisymmetric
parts of a sequence derived in Egs. (3.34) and (3.35) made use of the linearity theorem.

Time-Reversal Theorem

The Fourier transform of the time-reversed sequence g[—n] is given by G(e~/@); that is,

gl—n] +£> G(e™1). (3.58)

Time-Shifting Theorem

The Fourier transform of the delayed sequence x[n] = g[n —n,], withn, an integer, is given by X (e/®) =
e 19 G (e/¥); that is,

gln — n,] JER eI G (el?). (3.59)

1t follows from Equation 3.59 that since le~i9ne| = 1,|G(e/?)| = |X (e7®)|; that is, the magnitude
spectrum is unchanged by shifting a signal in time.

Frequency-Shifting Theorem

The Fourier transform of a sequence x[n] = e/®" g[n] is given by X (¢/®) = G(e/'“~*°)); that is,

Ej.wﬂfjg[n] _i} G(f?j{w—muj)_

Difterentiation-in-rrequency 1neorem

The Fourier transform of a sequence x[n] = n g[n] is given by X (e/*) = jfiﬁa{f“}; that is,
F .dG(el?)
ngln] «— j——.
d

(3.63)

(3.64)



Table 3.4: Discrete-time Fourier transform theorems.

Theorem Sequence Discrete-Time Fourier Transform
gln] G(e'®)
h[n] H(e/®)

Linearity agln] + Bhln] aG(e/®) + BH(e!?)
Time-reversal gl—n] rG (e~ 1wy
Time-shifting gln — nel eI 9N G (eI ®)

Frequency-shifting el@on g[n] G (ef “""‘*ﬂ})
Differentiation- 4G (eI?)
in-frequency ngln] dw
Convolution glnl®h(n] G(e/®)VH (e!?)
Modulation glnh(n) = [T, G(e®)H (/@) ap

20 i : .
Parseval’s Relation Z glnlh*(n] = % G(e/*)VH* (/) dw

n=—00 -




3.6 DTFT Computation Using Maas

The Signal Processing Toolbox in MATLAB includes a number of M-files to aid in the DTFT-based analysis of
discrete-time signals. Specifically, the functions that can be used are freqz, abs, angle, and unwrap.
In addition, the built-in MaTLAB functions real and imag are also useful in some applications.

FREQZ Digital filter frequency response.
[H,W] = FREQZ(B,A,N) returns the N-point complex frequency response
vector H and the N-point frequency vector W in radians/sample of

the filter:
jw -jw -jmw
jw B(e) b(1) +b(2)e +.... + b(m+1)e
H(e) = ---- =
jw -jw -jnw

A(e) a(1)+a(2)e +.... + a(n+1)e

given numerator and denominator coefficients in vectors B and A.
The frequency response is evaluated at N points equally spaced around the upper half of the unit circle.
If N isn't specified, it defaults to 512.

. . - —_— 'w .
In this book, many of the Fourier transforms we shall encounter are rational functions in e/, that is,

ratios of polynomials in e =/, and are of the form
P(ej“’) _ P0+P18_j“’+---+pM oM
D(e®)  do+die i+ +dye iV

—-joM
e’ (3.55)

X(e!?) =



DTFT Computation Using
MATLAB

* For example, the statement

= freqgz (num, den, w)

returns the frequency response values as a
vector H of a DTFT defined in terms of the

vectors num and den containing the
coefficients {p;} and {d,}, respectively at a
prescribed set of frequencies between 0 and
2 given by the vector w

Copyright © 2005, S. K. Mitra




% Program 3_1

% Discrete-Time Fourier Transform Computation

%

% Read in the desired number of frequency samples
k = input('Number of frequency points =");

% Read in the numerator and denominator coefficients
num = input('Numerator coefficients =");

den = input('Denominator coefficients =");

% Compute the frequency response

w = 0:pi/(k-1):pi;

h = freqz(num, den, w);

% Plot the frequency response
subplot(2,2,1)

plot(w/pi,real(h));grid

title('Real part’)

xlabel("omega/\pi'); ylabel('Amplitude')
subplot(2,2,2)

plot(w/pi,imag(h));grid

title('lImaginary part')
xlabel("omegal/\pi'); ylabel('Amplitude')
subplot(2,2,3)

plot(w/pi,abs(h));grid

titte('Magnitude Spectrum')
xlabel("omega/\pi'); ylabel('Magnitude')
subplot(2,2,4)

plot(w/pi,angle(h));grid

title('Phase Spectrum’)
xlabel("omegal/\pi'); ylabel('Phase, radians')
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Number of frequency points = 100
Numerator coefficients = [0.008 -0.033 0.05 -0.033 0.008]
Denominator coefficients = [1 2.37 2.7 1.6 0.41]



3.8 The Frequency Response of an LTl Discrete-Time System

Most discrete-time signals encountered in practice can be represented as a linear combination of a very
large, maybe infinite, number of sinusoidal discrete-time signals of different angular frequencies. Thus,
knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more
complicated signals by making use of the superposition property of the system. Since a sinusoidal si gnal
can be expressed in terms of an exponential signal, the response of the LTI system to an exponential input
is of practical interest. This leads to the concept of frequency response, f transform-domain representation
of the LTI discrete-time system. We first define the frequency response, investigate its properties, and

describe some of its applications. The computation of the time-domain representation of the LTI system
from its frequency response is outlined,

x[n] » hln] ——syin]

Figure 3.12: An LTI discrete-time system.




3.8.1 Definition

An important property of an LTI system is that for certain types of input signals, calledlefgenfunrrions, |the
output signal is the input signal multiplied by a complex constant. We consider here one such eigenfunction
as the input. Recall from Section 2.5.1, the input-output relationship of an LTI discrete-time system as

shown in Figure 3.12, with an impulse response A[n], is given by the convolution sum of Eq. (2.73b) and
15 of the form

= Y hiklln ~ &) (381)

k=-—m

where y[n] and x[n] are, respectively, the output and the input sequences. Now, if the input x[n] is a
complex exponential sequence of the form

i =", —co<n< 00, (3.82)




ihen, from Eg. (3.81), the output is given by

yinl= Y hlk)e!tH = ( Y k[k]e*f‘““) elen, (3.83)

k=—00

=—00

which can be rewritten as —
y[n] = H(e'")e’®", (3.84)

He) = Y h@ (3.85)

It can be seen from Eq. (3.85) that for a complex exponentjal input signal /", the output of an LTI
discrete-time system is also a complex exponential signal of th same frequency multiplied by a complex
constant H(e/*). Thus, ¢/“" is an eigenfunction of the system.

where we have used the notation

The quantity H(e!*) defined above is called the frequency response of the LTI discrete-time system,
and it provides a frequency-domain description of the system. Note from Eq. (3.85) that H (e*)is precisely
the Fourier transform of the impulse response A[n] of the system.




Just like any other discrete-time Fourier transform, in general, H (¢/%) 1s also a complex function of w
with a period 27 and can be expressed in terms of its real and imaginary parts or its magnitude and phase.
Thus,

H(e/®) = Hr(e’®) + j Him(e'®)

= |H ()",

where He(e/®) and Him(e/®) are, respectively, the real and imaginary parts of H(e/), and

0(w) = arg(H(e'?)). (3.86)

The quantity | H (e/?)| is called the magnitude response| and the quantity|6 (w) is called the phase response

of the LTI discrete-time system. Design specifications for the discrete-time systems, 1n many applications,
are given in terms of the magnitude response or the phase response or both. In some cases, the magnitude
function is specified in decibels as defined below:

G(w) = 20log;q |H(e!¥)| dB, (3.87)

where|{ §(w) is called the gain function [The negative of the gain function, A(w) = —G(w), is called the
attenuation or loss function.




152 Frequency-Domain Characterization 0T Tne L1 DISTIEE=LIHE
System
W now derive the frequency-domain representation of an LT1 discrete-time system. [f ¥ (¢/*) and X (1)

e the Fourder transforms of the output and input sequences, y [n] and x[n], respectively, then applying
e - mvolution theorem of Table 3.4 to Eq. (3.81). we arrive at

¥(e!?) = H(el*)X (e!), (3.8%)

Aot Hiel®) is the frequency response of the LTI system as defined in Eq. (3.85). Equation (3.8%) thus
‘¢t the input and the output of an LTI system in the frequency domain.

[ rom Eq. (3.88), we obtain
YY) \
H(e!) = { — (3.89)
X(el®)
I the frequency response of an LTI discrete-time system is given by the ratio of the Fourier transform
} ¢ 1ol the output sequence y[n] to the Fourier transform X (¢/®) of the input sequence x(n].

' [ollows from the input-output relatior of Eq. (3.88) of an LTI discrete-time system in the frequency
Jonain that the output cannot contain sinusoidal components of frequencies that are not present in the
it and the system. As a result, if the output of a system has new frequency components, then the system
. vher nonlinear or time-varying or both (Problem 3.50).



Frequency Response of LTI FIR Discrete-Time Systems

The LTI FIR discrete-time systems are characterized by an input-output relation of the form of Eq. (2.118)
and repeated below for convenience:

N2
ylrl= )" hikx[n k], Ny <Ny,
k=N,

Applying the discrete-time Fourier transform (DTFT) to the above equation and making use of the linearity
and the time-shifting properties of Table 3.4, we arrive at the input—output relation of the LTI system in
the transform-domain given by

Ny
Fe®) =) hlkle /X (e/?), (3.92)
k=N, ‘

where Y (e/“) and X (e/®) are the Fourier transforms of the sequences y[n] and x[n], respectively. In
eveloping Eq. (3.92), it has been tacitly assumed that Y (e/ “) and X (¢/“) exist. From the above equation,
we arrive at the expression for its frequency response H(e/®) as given below:

N2
H(el®) = Z hlkle /¢, (3.93)

k=N
which is seen to b€ a polynomial w




Frequency Response of LT! IIR Discrete-Time Systems

The LTI IIR dis:creta-.timc systems we shall be concerned with in this book are characterized by linear
constant coefficient difference equations of the form of Eq. (2.90) and repeated below for convenience:

N M
dey[n - k] = Zm,r[n - k].
k=0

k=0

aﬂiﬂﬁgmg_ the dis.m:ete-time Fo_urier transform (DTFT) to the above equation and making use of the linearity
«d the time-shifting properties of Table 3.4, we arrive at the input—output relation of the LTT system i
the transform-domain given by ystem 1n

N M
> die IRy () = > eI X (e79). (3.94)
k=0 k=0 ‘

I'he above equation can be alternate y written as
N M _
(Z dke""f‘”k) Y(e/®) = (Z pke—fw") X (e/®). (3.95)
k=0 k=0

Thus. from Eq. (3.95), the expression for its frequency response H(e/®) is given by

Y(el®)  Splopre I (3.56)
X(el®) — Yplgdie ok N

H(e/¥) =

L ——

witich is &rational function in e/, >

o ——




