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Chapter (3)
Continuous time Fourier Transform
Discrete time Fourier Transform



In Section 2.2.3, we pointed out that any arbitrary sequence can be represented in the time domain as a
weighted linear combination of delayed unit sample sequences (0 - k]}. An important consequence of
this representation, derived in Section 2.5.1, is the input-output characterization of a linear, time-invariant
(LTI) digital filter in the time domain by means of the convolution sum describing the output sequence

inear combination of its delayed mmpulse responses, In many applications, it is
convenient to consider an alternate description of a sequence in terms of complex exponential sequences
of the form {e™/*"}, where w is the normalized frequency variable in rad; i '

useful representation of discrete-time sequences and LTI discrete-time systems in the frequency domain.!
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The frequency-domain representation of a discrete-time sequence discussed in this chapter is the
discrete-time Fourier transform by which a time-domain sequence 15 mapped into a continuous func-
tion of the frequency variable w. Because of the periodicity of the discrete-time Fourier transform, the
corresponding discrete-time sequence can be simply obtained by computing its Fourier series represen-
tation.  Since the representation is in terms of an infinite series, existence of the discrete-time Fourier
transform is examined along with its properties,
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The Continuous-Time Fourier Transform

Probably the easiest way to introduce the discrete-time Fourier transform (DTFEFT) 1s through its counter-

part, the continuous-time Fourier transform (CTFT). As you will recall, the CTFT and its inverse can be
expressed as:

(1)

xa() &5 X, ().

(2)

Note that we use the upper case variable £2 to indicate continuous-time angular frequency in this course.
As we have discused, the first equation (which 1s actually the inverse CTFT) expresses the fact that a finite-
energy time function x(7) can be represented as a weighted linear combination of complex exponentials

A £

&' The second equation (the actual CTFT) tells you how to compute the weights X(;€2). Note that the
A
frequencies €2 include all real numbers.

TR T T T T £l

;:_ncra], the CTFT is a co;nplex function of € in the range —oco < < co. It can be expressed in polar
form as - o o
Xa(j2) = |Xa(j )]/,

where
0,(R) = arg{X,(j2)}.

The quantity |X,(j2)| is called the magnitude spectrum, and the quantity 8,(2) is called the phase
spectrum, with both spectrums being real functions of £2.
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Condition for CTFT

In geheral, the CTFT X.(j9) defined by Eq. (3.1) exists if the cqntinuous—time signal x4(#) satisfies
the Dirichlet conditions: |

(a) The signal has a finite number of finite discontihui_ties and a finite number of maxima and minima
in any finite interval.

(b) The signal is absolutely integrable; that s,

o0
f - |xg(0)ldt <00. 3.3)
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Figure 3.1: Plot of the continuous-time function of Eq. (3.4) for & = 0.5.
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3.1.2 Energy Density Spectrum
The total energy &, of a finite-energy continuous-time complex signal x4(t) is given by

o0 o
& = f () dt = ] xa(DxX(t)dt. 3.7)

=00 —oQ

The energy can also be expressed in terms of the CTFT X,(j2). To this end, we first replace x;(t) in the
above equation by its inverse CTFT expression as shown below:

* 1 ® (s —jQu
& = X (1) ” X (jQe *" d2|dr.
—00 -00

Interchanging the order of the integrations in the above, we get

1 [® o .

= — X33 [[ xa(t)e ¥ dt] aQ
2 J- -0
1

o0 1 o0
- — *GONX(iQ)dQ = — iQ)12dQ. 8
- f XK= 5 f GO (33)

Combining Egs. (3.7) and (3.8), we arrive at

* 2 1 [ )
f ra(0fdr =5 [ KPR, (39)

which is more commonly known @arseval s r@or finite-energy continuous-time signals.




The integrand | X,(j$2)|* on the right-hand side of Eq. (3.8) is called the energy density spectrum of
the continuous-time signal x,(¢) and is usually denoted by the symbol S,,(£2); that is,

Sex () = | X2 ()%

The energy £, over a specified range of frequencies 2, < Q < ;, of the signal x,(f) can be computed
by integrating Sy, (§2) over this range:

1 [
Sx.r = ‘&“‘Lﬂ Sxx (82) dQ2.



3.1.3 Band-limited Continuous-Time Signals

A full-band, finite-energy, continuous-time signal has a spectrum occupying the whole frequency range
—00 < §2 < oo, whereas a band-limited continuous-time signal has a spectrum that is limited to a portion
of the above frequency range. An ideal band-limited signal has a spectrunythat is zero outside a finite
frequency range 2, < |2] < 2, that is,

" —_ 0: OEIQI{ﬂﬂ!
@}—In, Q< [ {D

However, an ideal band-limited signal cannot be generated in practice, and, for practical purposes, it is
sufficient to ensure that for a band-limited signal outside the specified frequency range, the signal energy
is arbitrarily small.

Band-limited signals are classified according to the frequency range where most of the signal’s energy
is concentrated. A lowpass continuous-time signal has a spectrum occupying the frequency range 0 <
1$2| < 82, < oo, where Q,, is called the bandwidth of the signal. Likewise, 2 highpass continuous-time
signal has a spectrum occupying the frequency range 0 < 2, < || < oo, where the bandwidth of
the signal is from 2, to co. Finally, a bandpass continuous-time signal has a spectrum occupying the
frequency range 0 < Q; < || < Qu < oo, where Qy — Q. is its bandwidth. A precise definition of
the bandwidth depends on applications. As can be seen from Figure 3.2(a), the continuous-time signal of
Eg. (3.4) is a lowpass signal. It can be shown that 80% of the energy of this signal is contained in the
frequency range 0 < || < 0.4898, and hence, we can define the 80% bandwidth of the signal to be
0.4898x radians (Problem 3.10).




3.1.4 The Frequency Response of an LTI Continuous-Time System

As indicated by Eq. (1.2), the output response y, (f) of an initially relaxed linear, time-invariant continuous-

time system characterized by an impulse response h,(¢) for an input signal x, (1) is given by the convolution
integral

o0

yalt) = f halt = D)xa(e)dr.

=00

O,0 = halD B 100
Applying the CTFT to both sides of Eq. (3.10), we have J l\

Yu(fQ) — Ha(JQ)XﬂUQ)1

where ¥y (/€2), X, (j$2) and H,(j2) are, respectively, the CTETs of y,(t), x,(¢), and h,(f). The function
H, (7€) is called the frequency response of the LTI continuous-time system.



3.2 The Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of a discrete-time sequence x[n] is a representation of the
sequence in terms of the complex exponential sequence {¢/“"}, where w is the real frequency variable.
If there is no ambiguity, for brevity often the discrete-time Fourier transform is called simply the Fourier
transform (FT). The Fourier transform representation of a sequence, if it exists, is unique, and the original
sequence can be computed from its transform representation by an inverse transform operation. We first
define the forward transform and derive its inverse transform. We then describe the condition for its
existence and review its important properties.

The discrete-time Fourier transform X (/) of a sequence x[n] is defined by

o0

X@®) = Y xfnleon.
/ n=-—00
—

Flx[n]}

A 4

. the analysis equation,



FHX () . synthesis -
— 1 T synthesis equation,

— xn)=— [ X(e/*)e!*" du, (3.16)

21 Jn
called the inverse discrete-time Fourier transform. It should be noted that even though the integration in
Eq. (3.16) can be carried out over any interval of duration 27, it is a common practice to choose the interval
[—m, m]. The inverse discrete-time Fourier transform given by Eq. (3.16) can be interpreted as a linear
combination of infinitesimally small complex exponential signals of the form ». 7 el dyw, weighted by the

complex constant X (e/%) over the angular frequency range from —7 to .

to denote the X (/%) of the sequence x[rn]. Likewise, we shall use the operator syrhbol

ExeD

to denote the inverse Fourier transform x[n] of the transform X (e7?). A discrete-time Fourier transform
pair will be denoted as

x[n] *(-f—> X(ej"’). G.17)
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\ As can be seen from the definition|, the discrete-time Fourier transform X (e/?) of a sequence x[n] is a
continuous function of w.|However, unlike the continuous-time Fourier transform, it is a periodic function
in @ with a period 2. To verify this latter property, observe that for any integer %,

. periodicity property of the transform.

o0
X(ej(w+2ﬂk)) - Z x[n]e—j(w-!-brk)n — Z x[n]e-jme J2nkn
n=—og n==00
o0 [

- Z x[nle” 9" = X (e/%), for all values of k,

ne=—00

where we have used the fact e“/2*¥" = 1. It therefore follows that Eq. (3.12) represents the Fourier series
expansion of the periodic function X (e/“). As aresult, the Fourier coefficients x[n] can be computed from
X (¢/?) using the Fourier integral given by

>l

(3.16)

x[n) = % /w X(e/¥)el" dw,

called the|inverse discrete-time Fourier transform.| It should be noted that even though the integration in
Eq. (3.16) can be carmied out over any interval of duration 2, it is a common practice to choose the interval
[, r]. The inverse discrete-time Fourier transform given by Eq. (3.16) can be interpreted as a linear
combination of infinitesimally small complex exponential signals of the form }—ej"”"da) weighted by the

complex oonstant X (ef"’) over the angular frequmcy range from —7 to .
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Proof of IDFT equation

To verify that the integral on the right-hand side of Eq. (3.16) indeed results in the inverse FT x[n], we
substitute the expression for X (e/*) from Eq. (3.12) in Eq. (3.16), arriving at

x[n] = -2-1; f_i ( Z x[£] e"j“") el"dw.
f:=—00

The order of integration and the summation on the right-hand side of the above equation can be interchanged
if the summation inside the brackets converges uniformly, that is, if X (e/®) exists. Under this condition,
we get from the above

> 1 [T . > sinm(n — £)
—_ jo(n—6) = e
Z x[] (2,, j;re d“’) Z x[¢] 7(n —£)
f=—00 £=—00

= Z x[£] sinc(n — £).

d=—00

For n # £, sinw(n — £) = 0, and as a result, sinc(n — ¢) = 0. For n = ¢, sinc(n —£) = 0/0. In this case,
using I”Hospital rule, we get

sinmr(n—4¢) =« cos(mn) _

i = 1.
W =0 -
Thus,
sinc(n — €) = {é ’; :i'
= 8[n — £]. (3.18)

Hence, '

oo (s o]

> x[€)sinc(n — &) = Z x[£]8[n — €1|= x[n],

=—00 £==—00

using the sampling property of the unit sample sequence.



3.2.2 Basic Properties

X (e/®) is a complex function of the real variable @

X (/%) = Xee(e7®) + jXim(e’®) Xre(e/®) = 3(X (&%) + X* (),
(E = Arelf J I.m{Er ’ Xun{fjw) — }%{X(ij)— X*(ij)},

the polar form

X{.-f:“"') — |X{EJW)|EJ[E{W}+EII‘H IX(E;m)IEja(w)

i

magnitude function, phase function,

e ——— o o

the Fourier spectrum and likewise, | X (e/%)| and 8(w) are referred to as the mggmME spectrum and hase
spectrum, respectively. P

The relations between the rectangular and polar forms|

Xre(e/®) = | X (e/)| cos O (w),
Xim(e’®) = |X(e/%)| sin 8(w),
X (e/))? = X(e/*)X*(e/?) = X2 (/) + X2 (e/®),
Xim(e/®) 0(w) = arg{X (e/*)}.

Xre{fjw) )

X (el = | X (e79)|e/®@)

tan H(m] =



3.2.3 Symmetry Relations

x[n] = xee[n] + jXim[n]

Table 3.1: Symmetry relations of the discrete-time Fourier transforik of 2 complex sequence.

Sequence Discfete-’l‘ime Fourier Transform

x[n] X(eJ?)
x[-n] — X(e77?)
x*[—n] — X*J®)

CRe(xlnl]  Xes(ed®) = J(X(ef®) + X*(e7I*))
jimix[nl}  Xca(e/®) = H{X(e/¥) — X*(e77®))
Xcs[n] Xre(e/?)

Xcaln] i Xim(e!®)
Note: Xcs{egf‘“) and Xca{e/®) are the conjugate-symmetric and conjugate-antisymmetric
parts of X (e/), respectively. Likewise, xcs[n] and xca[n] are the conjugate-symmetric and
conjugate-antisymmetric parts of x[n], respectively.




For real sequence, xjn[n] = 0. Hence, from Eq. (3.33), Xca(e/®) = 0, and thus, from Eq. (3.31b), we
have X (e/?) = X*(e/®), implying that X (e/%) is a conjugate-symmetric function. As a result, the real
part Xr(e/“) and imaginary part Xim (e/®) of the Fourier transform of a real sequence are, respectively,
even and odd functions of w. !

Table 3.2: Symmetry relations of the discrete-time Fourier transfoé of a real sequence. 5

Sequence Discrete-Time Fourier Transform
x[n] X(e/?) = Xre(e/?) + jXim(e/®)
Xey[n) Xre(e/?)
xod[n] j Xim(e/?)

X (e/?) = X*(e~/®)
Xre(e/?) = Xie(e™79)
Symmetry relations Xim(e/?) = —Xim(e™/®)
X () = X (e7®)|

arg{ X (e/9)} = —arg{X (e~ /?))

Note: xey[n] and x,q[n] denote the even and odd parts of x{r], respectively.




3.2.4 Convergence Condition

Now, an infinite series of the form of Eq. (3.12) may or may not converge. The Fourier transform X (e/)
of x[n] is said to exist if the series in Eq. (3.12) converges in some sense. Let

K

Xg(®) = ) x[nle~/o", , (3.42)

n=—%K

denote the partial sum of the weighted complex exponentials in Eq. (3.12). Then for uniform convergence
of X (e/*),

lim Xg(e/®) = X(e/“).
E—o0

Now, if x[n] 1s an absolutely summable sequence, that is, if

o0
> |xer (3.43)

= 9]

Z x[n]e 7"
R=—0C
for all values of w guaranteeing the existence of X (e/*). Thus, Eq. (3.43) is alsufficient condition for the
existence of the Fourier transform X (e/*) of the sequence x[n].| Moreover, it can be shown that for an
absolutely summable sequence, the infinite series of Eq. (3.12) defining the Fourier transform converges
uniformly for all values of w.

A large class of sequences encountered in practice are of finite length with finite sample values. These
sequences are absolutely summable, and hence, their Fourier transforms converge uniformly. On the other
hand, infinite length sequences may or may not converge uniformly. The sequence x[n] = a"u[n], |@| < 1,
of Example 3.5 is absolutely summable as

= i [x[n]| |e‘f‘“”‘|:£ i |x[n]] < oo,

n=—0c R=—10Q

|X(ef“‘}| =

o0

Y leMuln] = Zj| S m'

n=—oa
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Figure 3.5: Plot of the Fourier transform of Eq. (3.43).
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hy pln| = , (00 < n < o0)

The nean-square convergence property of the sequence h p[n] discussed in Example 3.8 can be further
lustrated by examining the plot of the function

: SINWA
Kk . joy — Welt — jon
Xg(el®) = Zﬁ x[n)e e, [ Hrp g(e’™) = : _—T’: n"'""e ; (3.50)
A=_ih nNe=—

for various values of K, as shown in Figure 3.6. It can be seen from this figure that, independent of the
number of terms in the above sum, there are ripples in the plot of Hy p(e/“) around both sides of the point

«- = . T'he number of ripples increases as K increases, with the height of the largest ripple remaining the
same for all values of K. As K goes to infinity, the condition of Eq. (3.44) holds, indicating the convergence
of Hy p_ ¢ (e!”) to Hy p(e’®). The oscillatory behavior in the plot of Hy p g (¢/*) approximating a Fourier
transform Hy p(e/®) in the mean-square sense at a point of discontinuity, as indicated in Figure 3.6, is
commorly known as the Gibbs phenomenon. We shall return to this phenomenon in the design of FIR
flters besed on the windowed Fourier series discussed in Section 10.2.3.
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Figure 3.6: Frequency response plots of Eq. (3.51) for various values of XK.



Existence of the Fourier Representations

Under what conditions do the Fourier representations exist?

- The DTES and its inverse always exist for any discrete-time peri-
odic signal (after all, they are just finite sums).

- However, the other Fourier representations involve infinite sums
or integrals, so we need to be careful with convergence.

- As an example, consider the convergence properties of the DTFT.

- The DTFT converges uniformly if the signal is absolutely summable:

(0]

>, Ix[nll < .

n=—0oo

. On the other hand, the DTFT only converges in mean square if
the signal is only square summable:

o0

>, Ix[n]l? < e

NnN=—ao

- This leads to Gibbs’ effect, now demonstrated for a sinc pulse.
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Table 3.3: Commonly used discrete-time Fourier transform pairs.

Sequence Discrete-Time Fourier Transform
dfn) 1
o0
(o0 = = ) Y. 2mé(w + 2mk)
k=—0
I -
un) —— > mwblew+2mk)
k=—noa
o Woll Z 2ad{w — wy + 27k)
o= =g
0 H 1 ] I |
e e|n (lee] = 1) ——
i 4 D™ pln], (el < 1) 1
1 (1—qe—fe)s
I : = <
nppinl = 5'“-",{':%”. (—o0 <=n < o0) Hpplel™) = I, 0=le| = o,

0, we=l|ow =x

—
—




33 Discrete-Time Fourier Transform Theorems

There are a number of important theorems of the discrete-time Fourier transform that are useful in dig-
ital signal processing applications. These theorems can be used to determine the Fourier transforms of
sequences obtained by combining sequences with known transforms. We review these theorems in this
section. For compactness, the theorems are stated using the operator notation introduced in Eq. (3.17),
and we shall make use of the following Fourier transform pairs:

(3.56a)
(3.56b)

The proofs of most of the theorems given here are quite straightforward and are left as exercises.



Convolution Theorem

The Fourier transform Y {¢/%) of the convolution sum of two sequences, y[n] = g[n]®h[n], is given by
the product of their Fourier transforms G(e/?)H(e/*); that is,

—

1/ L F TR LOL m
Q @ hln] = Gle)H(e™). (3.6)

G(e!®)

gln—> DTFI
! el
(e Inverse yln]

hjn}—>| DTFT -—T

(eJ)

Figure 3.9: Linear convolution using the discrete-time Fourier transform.



Modulation Theorem

The Fourier transform ¥ (e/%) of the product of two sequences given by y(n] = glnh[n] is given by the

cs given 0y J17) = 61"
convlution ntegalofthir Fourie transforms 5 [ G(e/*)H(e/* )) db; that i,

}. 1 T o
g(nlh[n] = —

(3.66)

o |

The modulation theorem plays a key role in the ampli ' me used in digital com-
munications{ The modulation theorem is also known as the windowing rhearemi One application of this
theorem, to be considered later in Section K).2, is in the design of linear-phase FIR filter based on the
windowing of the impulse response of an ideal linear-phase filter with a doubly-infinite impulse response.




Parseval's Relation

This theoremn expresses the sum of sample-by-sample product of two complex sequences in terms of an
integral of the product of their Fourier transforms, Specifically, the most general form of this theorem is

given by




Linearity Theorem

Consider a sequence x[n] = ag(n] + Bhln] obtained by a linear combination of g{n) and h[n], where «

and f are arbitrary constants. The Fourier transform X (e/*) of x[n] is then given by aG(e/*) + BH (e/®);
that is,

« gln] + B h[n] <> a G(e/®) + BH(®). (3.57)

It should be noted that the Fourier transforms of the conju gate-symmetric and conjugate-antisymmetric
parts of a sequence derived in Egs. (3.34) and (3.35) made use of the linearity theorem.

Time-Reversal Theorem

The Fourier transform of the time-reversed sequence g[—n] is given by G(e~/@); that is,

gl—n] +£> G(e™1). (3.58)

Time-Shifting Theorem

The Fourier transform of the delayed sequence x[n] = g[n —n,], withn, an integer, is given by X (e/®) =
e 19 G (e/¥); that is,

gln — n,] JER eI G (el?). (3.59)

1t follows from Equation 3.59 that since le~i9ne| = 1,|G(e/?)| = |X (e7®)|; that is, the magnitude
spectrum is unchanged by shifting a signal in time.

Frequency-Shifting Theorem

The Fourier transform of a sequence x[n] = e/®" g[n] is given by X (¢/®) = G(e/'“~*°)); that is,

Ej.wﬂfjg[n] _i} G(f?j{w—muj)_

Difterentiation-in-rrequency 1neorem

The Fourier transform of a sequence x[n] = n g[n] is given by X (e/*) = jfiﬁa{f“}; that is,
F .dG(el?)
ngln] «— j——.
d

(3.63)

(3.64)



Table 3.4: Discrete-time Fourier transform theorems.

Theorem Sequence Discrete-Time Fourier Transform
gln] G(e'®)
h[n] H(e/®)

Linearity agln] + Bhln] aG(e/®) + BH(e!?)
Time-reversal gl—n] rG (e~ 1wy
Time-shifting gln — nel eI 9N G (eI ®)

Frequency-shifting el@on g[n] G (ef “""‘*ﬂ})
Differentiation- 4G (eI?)
in-frequency ngln] dw
Convolution glnl®h(n] G(e/®)VH (e!?)
Modulation glnh(n) = [T, G(e®)H (/@) ap

20 i : .
Parseval’s Relation Z glnlh*(n] = % G(e/*)VH* (/) dw

n=—00 -




Property Time domain Frequency domain

Linearity axi[n] +bxy[n] ax;(e/®) + bXo(e/®)
Differentiation nx[n] @y
d w

(frequency)
Time-shift x[n —nol o~ JWNo X (pJw)
Frequency-shift eJwonxn] X (eJ(w-wo))
Convolution xi[n] *x x2[n] X1 (e/®) Xy (e/@)
Modulation x1[nlx.[n] S X (e19) ® X (ei®)
Time-reversal x[—n] X(e Jw)
Conjugation x*[n] X*(e~Jw)
Symmetry (real) Jmi{x[n]} =0 X(e/w) = X* (e~ Jw)
Symmetry (imag) NRe{x[n]} =0 X(e/?) = —X*(e /)

*® m
Parseval > Ix[n]|° = %JW |X(e~“”) = fis

NnN=—wx



3.6 DTFT Computation Using Maas

The Signal Processing Toolbox in MATLAB includes a number of M-files to aid in the DTFT-based analysis of
discrete-time signals. Specifically, the functions that can be used are freqz, abs, angle, and unwrap.
In addition, the built-in MaTLAB functions real and imag are also useful in some applications.

FREQZ Digital filter frequency response.
[H,W] = FREQZ(B,A,N) returns the N-point complex frequency response
vector H and the N-point frequency vector W in radians/sample of

the filter:
jw -jw -jmw
jw B(e) b(1) +b(2)e +.... + b(m+1)e
H(e) = ---- =
jw -jw -jnw

A(e) a(1)+a(2)e +.... + a(n+1)e

given numerator and denominator coefficients in vectors B and A.
The frequency response is evaluated at N points equally spaced around the upper half of the unit circle.
If N isn't specified, it defaults to 512.

. . - —_— 'w .
In this book, many of the Fourier transforms we shall encounter are rational functions in e/, that is,

ratios of polynomials in e =/, and are of the form
P(ej“’) _ P0+P18_j“’+---+pM oM
D(e®)  do+die i+ +dye iV

—-joM
e’ (3.55)

X(e!?) =



DTFT Computation Using
MATLAB

* For example, the statement

= freqgz (num, den, w)

returns the frequency response values as a
vector H of a DTFT defined in terms of the

vectors num and den containing the
coefficients {p;} and {d,}, respectively at a
prescribed set of frequencies between 0 and
2 given by the vector w
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% Program 3_1

% Discrete-Time Fourier Transform Computation

%

% Read in the desired number of frequency samples
k = input('Number of frequency points =");

% Read in the numerator and denominator coefficients
num = input('Numerator coefficients =");

den = input('Denominator coefficients =");

% Compute the frequency response

w = 0:pi/(k-1):pi;

h = freqz(num, den, w);

% Plot the frequency response
subplot(2,2,1)

plot(w/pi,real(h));grid

title('Real part’)

xlabel("omega/\pi'); ylabel('Amplitude')
subplot(2,2,2)

plot(w/pi,imag(h));grid

title('lImaginary part')
xlabel("omegal/\pi'); ylabel('Amplitude')
subplot(2,2,3)

plot(w/pi,abs(h));grid

titte('Magnitude Spectrum')
xlabel("omega/\pi'); ylabel('Magnitude')
subplot(2,2,4)

plot(w/pi,angle(h));grid

title('Phase Spectrum’)
xlabel("omegal/\pi'); ylabel('Phase, radians')




Amplitude

Magnitude

0.5

-0.5

0.5

Real part

\ /

V

0.5 1

o/n

Magnitude Spectrum

/\f

/

0.5 1

o/n

Amplitude

Phase, radians

0.5

-0.5

Imaginary part

N

V
0.5 1
o/n
Phase Spectrum
x\
0.5 1
o'n

Number of frequency points = 100
Numerator coefficients = [0.008 -0.033 0.05 -0.033 0.008]
Denominator coefficients = [1 2.37 2.7 1.6 0.41]



The Unwrapped Phase
Function

 In numerical computation, when the
computed phase function is outside the
range [—7, 7], the phase is computed

modulo 27, to bring the computed value to
this range

Thus. the phase functions of some
sequences exhibit discontinuities of 27
radians in the plot
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The Unwrapped Phase
Function

* For example, there 1s a discontinuity of 2w

at ® = 0.72 1n the phase response below

X(ej(l))20.008—0.033(3_‘70) -|-O.05e_j2(0_0'0336—]3(})+0.0086_]-40)
l+2'37e_j(0—+—2.76’_‘j20)+l.6e_j3(0 +0.4le_~]'4°)

Phase Spectrum

4
24 2 /
o Copyright © 2005, S. K. Mitra




25

The Unwrapped Phase
Function

* In such cases, often an alternate type of
phase function that 1s continuous function
of o 1s derived from the original phase
function by removing the discontinuities of
27

* Process of discontinuity removal 1s called
unwrapping the phase

» The unwrapped phase function will be
denoted as 6, ()
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The Unwrapped Phase

Function

* In MATLARB, the unwrapping can be
implemented using the M-file unwrap

* The unwrapped phase function of the DTFT

of previous page 1s shown below

Unwrapped Phase Function

0.2 0.4 0.6 0.8
/T
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3.8 The Frequency Response of an LTl Discrete-Time System

Most discrete-time signals encountered in practice can be represented as a linear combination of a very
large, maybe infinite, number of sinusoidal discrete-time signals of different angular frequencies. Thus,
knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more
complicated signals by making use of the superposition property of the system. Since a sinusoidal si gnal
can be expressed in terms of an exponential signal, the response of the LTI system to an exponential input
is of practical interest. This leads to the concept of frequency response, f transform-domain representation
of the LTI discrete-time system. We first define the frequency response, investigate its properties, and

describe some of its applications. The computation of the time-domain representation of the LTI system
from its frequency response is outlined,

x[n] » hln] ——syin]

Figure 3.12: An LTI discrete-time system.




3.8.1 Definition

An important property of an LTI system is that for certain types of input signals, called|efgenfunrrions, |the
output signal is the input signal multiplied by a complex constant. We consider here one such eigenfunction
as the input. Recall from Section 2.5.1, the input-output relationship of an LTI discrete-time system as

shown in Figure 3.12, with an impulse response A[n], is given by the convolution sum of Eq. (2.73b) and
15 of the form

= Y hiklln ~ &) (381)

k=-—m

where y[n] and x[n] are, respectively, the output and the input sequences. Now, if the input x[n] is a
complex exponential sequence of the form

i =", —co<n< 00, (3.82)




ihen, from Eg. (3.81), the output is given by

yinl= Y hlk)e!tH = ( Y k[k]e*f‘““) elen, (3.83)

k=—00

=—00

which can be rewritten as —
y[n] = H(e'")e’®", (3.84)

He) = Y h@ (3.85)

It can be seen from Eq. (3.85) that for a complex exponentjal input signal /", the output of an LTI
discrete-time system is also a complex exponential signal of th same frequency multiplied by a complex
constant H(e/*). Thus, ¢/“" is an eigenfunction of the system.

where we have used the notation

The quantity H(e!*) defined above is called the frequency response of the LTI discrete-time system,
and it provides a frequency-domain description of the system. Note from Eq. (3.85) that H (e*)is precisely
the Fourier transform of the impulse response A[n] of the system.




Just like any other discrete-time Fourier transform, in general, H (¢/%) 1s also a complex function of w
with a period 27 and can be expressed in terms of its real and imaginary parts or its magnitude and phase.
Thus,

H(e/®) = Hr(e’®) + j Him(e'®)

= |H ()",

where He(e/®) and Him(e/®) are, respectively, the real and imaginary parts of H(e/), and

0(w) = arg(H(e'?)). (3.86)

The quantity | H (e/?)| is called the magnitude response| and the quantity|6 (w) is called the phase response

of the LTI discrete-time system. Design specifications for the discrete-time systems, 1n many applications,
are given in terms of the magnitude response or the phase response or both. In some cases, the magnitude
function is specified in decibels as defined below:

G(w) = 20log;q |H(e!¥)| dB, (3.87)

where|{ §(w) is called the gain function [The negative of the gain function, A(w) = —G(w), is called the
attenuation or loss function.




152 Frequency-Domain Characterization 0T Tne L1 DISTIEE=LIHE
System
W now derive the frequency-domain representation of an LT1 discrete-time system. [f ¥ (¢/*) and X (1)

e the Fourder transforms of the output and input sequences, y [n] and x[n], respectively, then applying
e - mvolution theorem of Table 3.4 to Eq. (3.81). we arrive at

¥(e!?) = H(el*)X (e!), (3.8%)

Aot Hiel®) is the frequency response of the LTI system as defined in Eq. (3.85). Equation (3.8%) thus
‘¢t the input and the output of an LTI system in the frequency domain.

[ rom Eq. (3.88), we obtain
YY) \
H(e!) = { — (3.89)
X(el®)
I the frequency response of an LTI discrete-time system is given by the ratio of the Fourier transform
} ¢ 1ol the output sequence y[n] to the Fourier transform X (¢/®) of the input sequence x(n].

' [ollows from the input-output relatior of Eq. (3.88) of an LTI discrete-time system in the frequency
Jonain that the output cannot contain sinusoidal components of frequencies that are not present in the
it and the system. As a result, if the output of a system has new frequency components, then the system
. vher nonlinear or time-varying or both (Problem 3.50).



Frequency Response of LTI FIR Discrete-Time Systems

The LTI FIR discrete-time systems are characterized by an input-output relation of the form of Eq. (2.118)
and repeated below for convenience:

N2
ylrl= )" hikx[n k], Ny <Ny,
k=N,

Applying the discrete-time Fourier transform (DTFT) to the above equation and making use of the linearity
and the time-shifting properties of Table 3.4, we arrive at the input—output relation of the LTI system in
the transform-domain given by

Ny
Fe®) =) hlkle /X (e/?), (3.92)
k=N, ‘

where Y (e/“) and X (e/®) are the Fourier transforms of the sequences y[n] and x[n], respectively. In
eveloping Eq. (3.92), it has been tacitly assumed that Y (e/ “) and X (¢/“) exist. From the above equation,
we arrive at the expression for its frequency response H(e/®) as given below:

N2
H(el®) = Z hlkle /¢, (3.93)

k=N
which is seen to b€ a polynomial w




Frequency Response of LT! IIR Discrete-Time Systems

The LTI IIR dis:creta-.timc systems we shall be concerned with in this book are characterized by linear
constant coefficient difference equations of the form of Eq. (2.90) and repeated below for convenience:

N M
dey[n - k] = Zm,r[n - k].
k=0

k=0

aﬂiﬂﬁgmg_ the dis.m:ete-time Fo_urier transform (DTFT) to the above equation and making use of the linearity
«d the time-shifting properties of Table 3.4, we arrive at the input—output relation of the LTT system i
the transform-domain given by ystem 1n

N M
> die IRy () = > eI X (e79). (3.94)
k=0 k=0 ‘

I'he above equation can be alternate y written as
N M _
(Z dke""f‘”k) Y(e/®) = (Z pke—fw") X (e/®). (3.95)
k=0 k=0

Thus. from Eq. (3.95), the expression for its frequency response H(e/®) is given by

Y(el®)  Splopre I (3.56)
X(el®) — Yplgdie ok N

H(e/¥) =

L ——

witich is &rational function in e/, >

o ——




“:; S H(eﬂ) -

‘ ot o g

H(es'_‘f‘ = ZL{ s hm#j_ggﬂwv oo
e1! ntK amvlmée/@? iy
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The Concept of Filtering

* One application of an LTI discrete-time
system 1s to pass certain frequency
components 1n an mput sequence without
any distortion (1f possible) and to block
other frequency components

Such systems are called digital filters and
one of the main subjects of discussion in
this course
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The Concept of Filtering

» The key to the filtering process 1s

* It expresses an arbitrary input as a linear
welghted sum of an infinite number of
exponential sequences, or equivalently, as a
linear weighted sum of sinusoidal sequences
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The Concept of Filtering

* Thus, by appropriately choosing the values
of the magnitude function IH (e’ °’)| of the
LTI digital filter at frequencies
corresponding to the frequencies of the
sinusoidal components of the input, some of
these components can be selectively heavily
attenuated or filtered with respect to the
others
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The Concept of Filtering

* To understand the mechanism behind the
design of frequency-selective filters,
consider a real-coefficient LTI discrete-time
system characterized by a magnitude
function

H(ejco) ~ {1, ‘(D‘ < W,
0, o.<o<n
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The Concept of Filtering

* We apply an input
x|n]=Acoswn+ Bcosm,n, O<o <o, <0, <7
to this system

» Because of linearity, the output of this
system 1s of the form

y|ln]= AH(ef"Dl )cos((x)ln + 9((01))

+ BH(@/.OQ )COS((Dzn + 6((02 ))
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The Concept of Filtering

e As

H(e/™) =1, H(e/)=0

the output reduces to
y[n] = A|H (e/™ )| cos(myn +0(w;))
* Thus, the system acts like a lowpass filter

* In the following example, we consider the
design of a very simple digital filter
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3.8.7 The Concept of Filtering

One application of an LTI discrete-time system1s to pass certain frequency components in aninput sequence

_\ﬂl.l.mnl_auy]diﬂniun (if possible) and to block other frequency components. Such systems are called
digital filters and are one of the main subjects of discussion in this text. The Key o the filtering process is the

inverse discrete-time Fourier transform given in Eq. (3.16) which expresses an arbitrary input sequence as
2 linear weighted sum of an infinite number of exponential sequences, or equivalently, as a linear weighted
sum of sinusoidal sequences. As a result, by appropriately choosing the values of magnitude function of
the LTI digital filter at frequencies corresponding to the frequencies of the sinusoidal components of the
input, some of these sinusoidal sequences can be selectively heavily attenuated or filtered with respect to
the athers.

T

1 o
x[n]=— X(e/“)e’”" dw,
2w J



WiV ViAW1 O,

We now explain the concept of filtering and then define the most commonly desired filter characteristics.
To understand the mechanism behind the design of such a system, consider a real coefficient LTI discrete-

time system characterized by 2 magnitude function

‘ ' ~ l’ O 5 |w| S wCJ
Joy =
|H(e"™)| = 0, o < o] <. (3.106)

We apply an input x[n] = Acoswin + Beosayn t0 this system, where 0 < 0 < 0 <@y <T.
Because of linearity, it follows from Eq. (3.102) that the output y[n] of this system is of the form

J{n] = AJH ()| cos(win + 6(@))) + BIH(")|cos(wnn + (@), | 3107
Making use of Eq. (3.106) in Eq. (3.107), we get
yln] & A|H (") cos(win +8(w1)),

indicating the LTI discrete-time system acts like a lowpass filter.




Finite-Length
Discrete Transforms

Often, in practice, it is convenient to map a finite-length sequence from the time domain into 2 finite-

length sequence of the same length in a different domain, and vice-versa. Such transformations are usually

collectively called finite-length tranforms and are the subject of this chapter, In the forward transform,
the samples of the transform are unique and represented as a linear combination of the samples of the time-
domain sequence. The original time-domain sequence can be obtained by applying an inverse transform

in which the time-domain samples are expressed s a linear combination of the samples of it transform-
domain representation.




In some applications, a very long length time-domain sequence is broken up into a set of short-
length time-domain sequences and a finite-length transform is applied to each short-length sequence. The
transformed sequences are next processed in the transform domain, and their time-domain equivalents are

generated by applying the inverse transforms. The processed short-length sequences are then grouped

together appropriately to develop the final long-leneth sequence.

L

A vari-c-ty of finite-dimensional transforms have been 'édﬁa-hced and a discussion on each of these
transforms is beyond the scope of this book. We restrict our attention in this chapter to the so-called class

of orthogonal transforms,

In particular, we discuss here three such transforms, namely, the discrete Fourier

rransfonn the discrete cosine rramfom:, and the Haar transform, The former transform is widely used
in a number of dlglta] signal processing applications, whereas the latter two find applications primarily in

signal compression,



5.1 Orthogonal Transforms

Let x[n] denote a length-N time-domain sequence with X[k] denoting the coefficients of its N-point
orthogonal transform. Then, a general form of the orthogonal transform pair is of the form

N-1
X[k]= ) x[nly*k,n], O<k<N~1, (5.
2=0
1 N-1
xln] = — Z X[kl¢lk,nl, O<n<N-—1. (5.2)
k=0

Equation (5.1) usually is referred to as the analysis equation, whereas Eq. (5.2) is referred to as the synthesis
équation. In these equations, ¥[k, n], called the basis sequences, are also length-N sequences in both
domains. In the class of finite-dimensional transforms we shall deal with in this chapter, the basis sequences
satisfy the condition |

N—-1
{ 1, €=k, (53)

1
N 2 VA e nl =10

n=0



5.2 The Discrete Fourier Transform

In this section, we define the discrete Fourier transform, usually known as the DFT, and develop the inverse
transformation, often abbreviated as IDFT. We relate the DFT to the Fourier transform of the time-domain
sequence, review its major properties, and study especially two of its unique properties in the following
section. Several important applications of the DFT, such as the numerical computation of the Fourier
transform and implementation of linear convolution, are discussed in a later section.

5.2.1 Definition

The discrete Fourier transform (DFT) of the length-N time-domain sequence x[n] is defined by

: N—1 - )
X[k] = ) x[nje~72rk/N, (5-7)
n=0
obtained by setting the basis sequences in Eq. (5.1) as |
Yk, n] = e/ ZFkn/N, B (5.8)

which are complex exponential sequences. As a result, the DFT coefficients, X[k], in general are complex
numbers even when x[z] are real. It can be easily shown that the basis sequences ¢/2"*"/¥ are orthogonal:




Proof of the Orthognality Property
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that is, they satlsfy the condition of Eq. (5.3). To this end, we observe that

N 1 -1
Zejhkn/N —;ucnm Z e;z:rr(k—t)u/N
N n=0

By setting u = e/2"*=0/N the right-hand side of the above equation reduces to a finite sum of the form

N-1
SN—-1= E u”.

n=0
It follows from the above that ,
N-1 !
Z:u =14u Zu =14 uSy_1 = Sn—1 +u
n=0 n=0
which, when solved, yields
1 —u?
SN_] = —1—""'— . (5-9)
—u

Substituting u = /2?7 &—0/¥ jj the above equation we get

N-—1 i

. 1 — e_;2:r(k—-£)

FZr(k—En/N __ .
Z e - 1 — ef2nx—8)/N° (5.10)
n=0

For k # £, the numerator of the right-hand side of the above equation is equal to zero. For k = £ + rN,
the right-hand side of the above equation is of the form 0/0. However, it can be seen from the left-hand
side that for kK = £, the sum is equal to N. Hence,

1 V=1
= Z ei2zntk—on/N _ | 1, fork = £+
0, fork #é&,

n=0

verifying the orthogonality property of the basis sequences ¢/27%*/N _ 1t follows from Eq. (5.7) that the

TWITr wres = »




N — Point DFT and IDFT

ifyi i i j2xkn/N 1t follows from Eq. (5.7) that the
verifying the orthogonality property of the basis sequences e : .
DET X{k] is a length-N sequence in the transform domain. Often, the length-N DFT sequence is referred

to as the N-point DFT. Applying the commonly used notation

Wy = e~V
We can rewrite Eq. (5.7) as
N—1
X”{]:ZI[HJW, O<k<N-—1.
n=0

The inverse discrete Fourier transform (IDFT) is given by

N-—1
1 — ki
sl == > XIW*,  0<n<n -1,
k=0

obtained using the basis sequences of Eq. (5.8) in Eq. (5.2). As can be seen from the above ex
the inverse DFT x[n] can be a complex sequence even when the DFT X [k] is a real sequence.

(3.12)

(5.13)

(5.14)

pression,

Equations /5.13) and (5.14) constitute a discrete Fourier transform pair for the sequence x[n]. A

Aiscrete Fourier transform pair will often be denoted s

C 1 &% xpg. >

'he DFT computation is illustrated in Examples (5.1) and (5.2).

Verifying : Examples 5.1 and 5.2

(5.15)



Discrete Fourier Transform

« Example - Consider the length-N sequence

x[n]:{l, n=0

0, 1<n<N-I

 Its N-point DFT 1s given by

N-1 k 0
X[kl1= S x[n)Wa" = x[0)Wy =1
n=0
0<k<N-1
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Discrete Fourier Transform

« Example - Consider the length-N sequence

=1 g o
MH=10, 0<n<m—1,m+1<n<N-1

* Its N-point DFT 1s given by
- &l kn km km
YIkl= Y nWy" = yimw " =wi
n=0
0<k<N-1
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5.2.2 Matrix Relations
The DFT samples defined in Eq. (5.13) can be expressed in matrix form as

o (5.25)

where X is the vector composed of the N DFT samples, i
X=[X[0] X[1] --- X[N-~-1]17, | (5.26)

X is the vector of N input samples,

x=[x[0] x[1] --- x[N-1]17, (5.27)

and Dy is the N x N DFT matrix given by

—~ -—

1 1 .1 . 1
1 W) wi oo owi!
Dy=|1 wi wi ... w2D | (5.28)

1 WIIVV—I W:,(N_l) o WI(VN_I)(N—I)

-




Likewise, the IDFT relations can be expressed in matrix form as

x[0] ] [ X[0]
x[1 X[1] '
[. J = DR,I [ , (3.29)
| x[N-1] | | X[N-1] |
where Dg,' is the N x N IDFT matrix giver by v
- 1 1 1 1 -
L owy! wyt oo wyh
— 1 -2 —4 —2(N-1)
Dy’ = N L Wy Wy e Wy : (3.30)
R Wb 2= W, &=Dw=1 |
It follows from Egs. (5.28) and (5.30) that l

1
D! = P -' (5.31)



5.3 Relatidn Between the Fourier Transform and the DFT and
Their Inverses

We now examine the explicit relation between the Fourier transform and the N -point DFT of a length-N
sequence and the relation between the Fourier transform of a length-M sequence and the N -point DFT
obtained by sampling the Fourier transform.

5.3.1 Relation with Discrete-Time Fourier Transform

From Eq. (3.12), the Fourier transform X (e/?) of the length- N sequence x[n], defined for 0 =n=<N-|,
1s given by

[o7s) N-—1
X(e) = )" xlnle~ion = D x[n)eien (5.34)

n=—00 n=()

By uniformly sampling X (¢/#) at N equally spaced frequencies wy = 2k/N,0 < k < N — 1, on the
w-axis between 0 < w < 27, we get from the above equation |

N-1
@)IQ > x[nle /AN <k <N 1. (5.35)
n=(0

Comparing Eq. (5.35) with Eq. (5.7), ' at the N-point D ence X[k] is precisely the set

Jue; 3 : ¢ Fourier tra, , : p sequence x[n] at N eqgually spaced
frequencies w;, = 2k /N,0<k<N-—1. Hence, Eq. (5.7) represents a frequency-domain representation
ot the sequence x[n]."™ Since the computation of the DFT samples involve a finite sum, for time-domain
sequences with finite sample values, the DFT always exists,

Because of the explicit relation between the DFT samples and the frequency samples of the Fourier
transform, the normalized angular frequency associated with the index & of the DFT sample X [k]is 27k /N
radians. For example, for N = 32, the sample index 11 represents the normalized angular frequency
w=11x/16,




3.3.2 Numerical Computation of the Fourier Transform Using the DFT

The DF i :

length quiﬁﬂ;;g;c;ﬁ?}gr?;ch to the numerical computation of the Fourier transform of 2 finite
, ) thm vaila . -

be the Fourier transform of a lengﬂ;-iro? s are avatlable for the computation of the DFT, Let X (e/?)

; ue i ;
frequencies wp =2nk/M, 0 <k<M *i?wx:feﬁl:L) ‘ze wish to evaluate X (e7®) at a dense grid of
X(e) =Y x[nle~ i@ = N ypy10—i2nkn/M
= nle
o 2 [n] ; (5.36)

Define a new sequence x,[1

] obtained from x[n] by augmenting with M — N zero-valued samples:

x[n], 0<n<N-1,
xeln] = [O, N<n<M-—1. (5.37)
Making use of x.[n] in Eq. (5.36), we arrive at
. M—l . ’
X (e/%%) = Z x,[nle IFknIM (5.38)
n=0

i
which is seen to be an M-point DFT X,[k] of the length-M sequence xg[n]. The DFT X,[k] can be
computed very efficiently using the FFT algorithm if M is an integer power of 2.

The MATLAB function £reqz, described in Section 3.6, employs the above approach to evaluate the
frequency response of a rational Fourier transform expressed as a rational function in e~J® at a prescribed
set of discrete frequencies. It computes the DFTs of the numerator and the denominator separately by
considering each as finite-length sequences and then expresses the ratio of the DFT samples at each
frequency point to evaluate the Fourier transform. '




N—]
N—1 1 ki
_ kn x[n] = — E X[kIw*", 0<n<N-1,
X[kl—;-ox[n]W , 0<k<N-1. N~

As can be seen ﬁm(S. 13) and (5.14), the computation of the DFT and the IDFT requires, respec-
tively, approximately N 2 complex multiplications and N(N — 1) complex additions. However, elegant
methods have been developed to reduce the computational complexity to about N (log, N) operations.
These techniques are usually called fast Fourier transform (FFT) algorithms and are discussed in Sec-
tions 11.3.2 and 11.4. As a result of the availability of these fast algorithms, the DFT and the IDFT, and
their variations, are often used in digital signal processing applications for various purposes.

=.2.3  DFT Computation Using MATLAB

There are four built-in functions in MATLAB for the computation of the DFT and the IDFT:

T (xy, ffe(x, M), iffe(X), 1fft (X, M)

All of these functions make use of FFT algorithms, which are computationally highly efficient compared

to the direct computation of DFT and the inverse DFT. In addition, the function|d f tmtx (N) fn the Signal

Processing Tootbox of MATLAB can be used to compute the N x N DFT matrix Dy, defined in Eq. (5.28).

To compute the inverse of the N x N DFT matrix, one can use the functiod conj (AZtmtx (N) ) /N,
We illustrate the application of the above M-files in Examples 5.3 and 5.7,

The M-file £ ftshift shifts the zero-frequency sample at the frequency index k = 0 to the center of
the spectrum and is often useful in visualizing the spectrum of a sequence. - o

Verifying : Examples 5.3 and 5.4



DFT Computation Using
MATLAB

* The functions to compute the DFT and the
FT are £ft and ifft

* These functions make use of FFT
algorithms which are computationally
highly efficient compared to the direct
computation

* Programs 5 1.mand 5 2.m 1illustrate the
use of these functions
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be the Fourier transform of a length-
frequencies w;

X (edo%y = Z x[nle /o — Z x[n]e i2wkn/M

N-1

n=0

» particularly if fast algorithms are available for the computation of the DFT. Let X (¢/¢)

N sequence x[n]. We wish to evaluate X (¢/@ i
=27k/M,0 <k <M — 1, where M > N: > )latadcnseg-ldof

U = fft(u,M)
M=16, the length of the DFT
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Read in the length K=8 of the DFT and the desired
% length N =13 of the IDFT

Original DFT samples
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Figure 5.2: (a) Original DFT sequence of length K = 8 and (b) its 13-point IDFT.
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MATLAB

« Example - Program 5 3.m can be used to
compute the DFT and the DTFT of the

sequence
x[n]=cos(6bnn/16), 0<n<15

as shown below

o mdicates DFT samples
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% Program 5_3
% Numerical Computation of Fourier transform Using DFT

k=0:15;

w = 0:511;

X = cos(2*pi*k*3/16);% Generate the length-16 sinusoidal sequence
X = fft(x); % Compute its 16-point DFT=fft(x,16)

XE = fft(x,512); % Compute its 512-point DFT

% Plot the frequency response and the 16-point DFT samples

plot(k/16,abs(X),'0', w/512,abs(XE))

xlabel("omega/\pi');
ylabel('Magnitude')




