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Basic Approaches to FIR Digital Filter Design

 Unlike IR digital filter design, FIR filter design does not have any
connection with the design of analog filters.

» The design of FIR filters is therefore based on a direct approximation of
the specified magnitude response, with linear phase response

« recall a causal FIR transfer function H(z) of length N+1 is a polynomial
in z-1 of degree N and the corresponding frequency response is given by:

N
H(e??®) = Zh[n]e‘fw".

n==0

the design of FIR filter of length N+1 can be accomplished by finding
either the impulse response sequence {h[n]} or N+1 samples of its
frequency response H(e /)



Least Integral-Squared Error
Design of FIR Filters

e Let H,;(e’®) denote the desired frequency
response

e Since H_;(e’?)is a periodic function of ®
with a period 2. 1t can be expressed as a
Fourier series

H (') = S hy[nle /"

where e
«— 1 T . .
h;[n]= > 1 H,;(e’?)e’dm, —oo<=n<wo
7T

* In general. H,(e’/®)1s piecewise constant
with sharp transitions between bands

« In which case. {h,[n]} is of infinite length
and noncausal

e Objective - Find a finite-duration {#,[n]}
of length 2M+1 whose DTFT H,(e’®)
approximates the desired DTFT H;(e’?) in
some sense
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(a) Ideal frequency response of a lowpass filter. (b) Impulse response of the
ideal lowpass filter.

Not BIBO, Not Causal : we need to shift it and chop off tails (ie : keep the most significan
parts. One most commonly used approximation criterion is to :minimize the integral-squared

error.
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« Using Parseval’s relation we can write

D = vz\h[n] h[n]2

B i1+ Eh;?[n]

' n=—o0 =M +1
o/ It follows from the above that ® 1s

minimum when\/.[n] = h,[n] tor —-M <n<M

 — Best finite-length approximation to ideal
infinite-length impulse response 1n the
mean-square sense 1s obtained by|truncation

A causal FIR filter with an impulse response
h|n] can be derived from A [n] by delaying:
hlnl=hn—M] |

e The causal FIR filter #[n] has the same
magnitude response as A.[n] and its phase

response has a linear phase shift of oM
radians with respect to that of A,[n]
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5 Effects on the frequency response of truacating the ideal impulse response to
(a) 13 coefficients, (b) 25 coefficients and (c) an infinite number of coefficients.



Gibbs Phenomenon

» Gi1ibbs phenomenon - Oscillatory behavior in
the magnitude responses of causal FIR filters
obtained by truncating the impulse response
coefficients of 1deal filters
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- As can be seen. as the length of the lowpass
filter 1s increased. the number of ripples 1n
both passband and stopband increases. with
a corresponding decrease 1n the ripple
widths

= Height of the largest ripples remain the
same 1independent of length

e Similar oscillatory behavior observed 1n the
magnitude responses of the truncated
versions of other types of ideal filters



* (G1bbs phenomenon can be explained by
treating the truncation operation as an
windowing operation:

hn|=hy|n]-wn]
* In the frequency domain

Convolution
. T . |
H.(e’® :% [H,(e’®)¥ (/) do
—TU
+ where H,(¢’®) and ¥(e’®) are the DTFTs
of h[n] and wln], respectively




» Thus H,(e’®)1s obtained by a periodic
continuous convolution of H ;(e’®) with
¥(e’?)
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If W(e/®)is a very narrow pulse centered at
® = 0 (1deally a delta tfunction) compared to
variations in H ;(e’®). then H,(e’/®) will

approximate H ;(e’®) very closely @

Length 2A4+1 of w[n] should be very large

On the other hand. length 2A/+1 of A.[n]
should be as small as possible to reduce
computational complexity

A rectangular window 1s used to achieve
simple truncation:

1. O0<n<M
WR[”]:{ | |

0. otherwise
Presence of oscillatory behavior in H,(e/®)
1s basically due to:

— 1) hy|[n] is infinitely long and not absolutely
summable. and hence filter 1s unstable

— 2) Rectangular window has an abrupt transition
to zero



* Oscillatory behavior can be explained by
examining the DTFT Wg (e’?) of wg|[n]:

Rectangular window
3 O ¥ T
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- VWV, (ejco) has a main lobe centered atco =0

e Other ripples are called sidelobes

e Main lobe of Wgr(e/®) characterized by its
width4mwt/(2M +1) defined by first zero
crossings on both sides of =0

e As M increases. width of main lobe
decreases as desired

e Area under each lobe remains constant
while width of each lobe decreases with an
mcrease m M

« Ripples in H,(e’/®) around the point of
discontinuity occur more closely but with
no decrease 1n amplitude as M increases



» Rectangular window has an abrupt transition
to zero outside the range — M <n <M, which
results in Gibbs phenomenon in H,(e’/®)

* Gibbs phenomenon can be reduced either:

(1) Using a window that tapers smoothly to
zero at each end. or

(2) Providing a smooth transition from
passband to stopband 1n the magnitude
specifications
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Figure 7.6 An illustration of how the filter coefficients, h(n), are determined by the window
method.




Impulse Responses of Ideal

Filters
» Ideal lowpass filter -
H[_p(ej )
| SIN M 77
th[n] Ttn , —OoO <N <o
— < 0
» Ideal highpass filter -
. 3
Hap(e? ) (D
! h [n] p—
i 5111(0)Cn) -0
- 0 "N "
» Ideal bandpass filter -
Hpp(e’ )
}l,
(sin(® -77) sin(m 77)
T - 9] n=0
hppln]=- ® 5 o
c2 - cl i n =0
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Impulse Responses of |ldeal

Filters
e Ideal multiband filter -
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Ag : HZ\IL (e]CO) — Ak >
- ©p_1 <O< O,
11 k=12.....L
L sim(mzn)
Mg lnl=2.(4; —Ar) —57
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o Ideal discrete-time Hilbert transformer - ¢ Ideal discrete-time differentiator -
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HHT(QJ(D):{ .
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-m<m<( o
Hpp(e®)=jo, 0<lo[<n

0. forn even (0. n=0
hHr[”] :{ | . hpieln] =1 cosmn 120
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Table 7.2 Summary of ideal impulse responses for standard frequency selective filters.

Ideal impulse response, hy(n)

Filter type ho(n), n#0 hy(0)
sin(nw,)
Lowpass 2f, —— 2f,
ne,
Highpass -2 f,— Sin (nw ) 1-2f,
Bandpass 2f, S (10;) _, - Sin(n,) 2~ f)
no, n,
Bandstop 2f, sin(n,) _ 2f2 sin (n,) 1-2(f,-1)
nw, nw,

f., f, and f, are the normalized passband or stopband edge frequencies; N is the length of filter.



FIR Filter Design Based on
Windowed Fourier Series



Fixed Window Functions

* Using a tapered window causes the height
of the side, obes to diminish, with a
corresponding mcrease 1n the main lobe
width resul t1n0 in a wider transition at the

discontinuity
 Hann: ,
wn]=0.5+ 0'5C05(2Mﬂ-}: 1), -M<n<M

« Hamming: )
wn]=0.54+0. 46cos(2 i ), ~M=<n<M

* Blackman:
wn]=0.42+0. 5cos(22"” )+0. 08cos(24"” )




Rectangular

Figure 10.6: Plots of the fixed windows shown with solid lines for clanity.
Generated using Matlab hann, hamming, blackman, bartlett commands (plotted as continues for clarity)

windows of length N = 2M + 1 listed below [Sar93]:*
||

- — —_— — "M = Hn E M1 I::“].E'g}
Bartletr: wn] = 1 M1 =
1 imn
: - \ -M<=n=<M, {10.30)
Hann: wn] = > [1 + cos (EM T I)] =n=
2rn :
Hamming: w[n] = 0.54 + 0.46 cos (EM m 1) , ~M=n=M, (10.31}

Imn 4 0.08 ( 4rn )
. - co {08 cos ,
Blackman: w[n] =042 +40.3 E(EH+ 1) IM 41

~M=n<M, (10.32)



Gain, dB

Fixed Window Functions
Plots of lnfionltudes of the DTFTs of these

Rectangular window Hann window
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Magnitude spectrum of each window
characterized by a main lobe centered at

® = 0 followed by a series of sidelobes with
decreasing amplitudes

Parameters predicting the performance of a
window 1n filter design are:

Main lobe width
Relative sidelobe level

Main lobe width A, - given by the
distance between zero crossings on both
sides of main lobe

Relative sidelobe level A, - given by the
difference in dB between amplitudes of
largest sidelobe and main lobe



FI ¢(eJ™)| Windowed LPF

ideal LPF Fixed Wind = i
1+8 P — =~ . (el 03) IXe INaow Function
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Observe H, (e/(®c+A®)) 4 F, (e/(®Pc=80)) =]
Thus. H, (e’?<)=0.5

Passband and stopband ripples are the same
IDistance between the locations of the
maximum passband deviation and minimum
stopband value = A,

Width of transition band

N> — o, —



 To ensure a fast transition from passband to
stopband. window should have a very small
main lobe width

* To reduce the passband and stopband ripple
S. the area under the sidelobes should be
very small

 Unfortunately. these two requirements are
contradictory

* In the case of rectangular. Hann. Hamming.
and Blackman windows. the value of ripple
does not depend on filter length or cutoff
frequency .. and 1s essentially constant

e In addition.

ACDNL

M
where ¢ 1s a constant for most practical

purposes



Fixed Window Functions
Plots of magnitudes of the DTFEFTs of these
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* Rectangular window -A;,;, =4n/(2M +1) * Hannwindow - A, =81/(2M +1)
A, =13.3dB, o, =209dB, Aw=092n/M > 4,=315dB,0,=43.9dB, Ae=3.11n/M:

« Hamming window - A,; =81/(2M +1) + Blackman window - A,z =121/(2M +1)
A, =427dB, 0, =545dB, Ao=3.32n/M 4, =58.1dB,a, =753 dB, Aw=5.56n/M

s



Table 10.2: Propecties of some fixed window functions.*

"T)rpe of MainLobe  Relative Sidelobe Minimum Stopband  Transition

Window Width Ay, Level Ag Attenuation Bandwidth Aw
Rectangular 4 /(2M +1) 13.3dB 209dB 0927 /M
Barlett dn/(M +1) 26,5 dB See text Sec tex!
Hann 8 /(2M +1) 31.5dB 439 dB 31 /M
Hamming ~ S7/(2M +1) 42,7dB 54.5dB 330 /M
Blackman  120/(2M + 1) 58.1dB 753dB 5.56n /M

Table 10.2 summarizes the essential properties of the above window functions, except the Bartlett
window. For the latter window, the stopband edge is difficult to determine as the frequency response of
the filter designed using this window has no unit circle zeros, and as a result, the value of the stopband
attenuation and the expression for the transition bandwidth are not precisely known. The Bartlett window

finds applications in spectral estimation.



* Filter Design Steps -
(1) Set
O, = (0, +o;)/2
(2) Choose window based on specified o
(3) Estimate M using

A(ONL

M



FIR Filter Design Example

« Lowpass filter of length 51 and ®, =7/2

Lowpass Filter Designed Using Hann window Low pass Filter Designed Using Hamming window
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e An increase 1n the main lobe width 1s
assoclated with an increase 1n the width of
the transition band

» A decrease 1n the sidelobe amplitude results
1n an increase 1n the stopband attenuation
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Adjustable Window Functions

OW -

_ 1 Kk . _2nkTt
win] = ogg ily +2 z Tr(Beos 537 3105537 +17-
— M <=n<M
where __ amplitudeoft sidelobe

Unlike ripples of

main lobe amplitude _ ,
the filter designed

_ . 1 1.—11 using one of the
B o COSh( 2M cosh _) fixed windows
functions which
and | 1 are fixed
cos(fcos™'x). [|x]=1
T, (x) =

cosh(/cosh™ x).
 Dolph-Chebyshev window can be designed
with any specified relative sidelobe level
while the main lobe width adjusted by

choosing length appropriately

e Filter order 1s estimated using
2.0560. —16.4 N=2M
2.85(Am)

where Amis the normalized transition
bandwidth. e.g. for a lowpass filter

) AW = ;3 —m,




* Gan response of a Dolph-Chebyshev
window of length 51 and relative sidelobe
level of 50 dB 1s shown below

Dolph-Chebyshev Window
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Properties of Dolph-Chebyshev window:

 All sidelobes are of equal height

 Stopband approximation error of filters
designed have essentially equiripple
behavior

* For a given window length, 1t has the
smallest main lobe width compared to other
windows resulting 1n filters with the
smallest transition band



Adjustable Window Functions

e Kaiser Window - The most commonly used
. 2
w{n]:lo{ﬁ\/l W/ M)5 | _pf<n<m
1o (B)

where 3 1s an adjustable parameter and 7y (21)
1s the moditied zeroth-order Bessel function
of the first kind: .
© (u/2) 1>
I,y =1+ 3 [W 2y

=1

* Note /,(#) >0 foru =20 N=2M
20 r -

e In practice I, ,(u) =1+ Z[(” 1'2) 1
r=1 -

* B controls the mmimum stopband
attenuation of the windowed filter response

* [ 1s estimated using

0.1102(a . —8.7). for e, > 50
B=4 0.5842(a . —21)9-4+0.07886(ar . —21). for 21= &, =50
0. for o, <21
« Filter order 1s estimated using
. 2.285(Awm) . Note: it provides no
where A® 1s the normalized transition e ©

bandwidth passband ripples



FIR Filter Design Example

* Specifications: ®, =0.31, o, =0.57.
o, =40dB

* Thus o, =(0,+0,)/2=04n
5. =10"%'*" =0.01

B=0.5842(19)"* +0.07886x19 = 3.3953

N = 52 =22.2886

2.285(0.2m)

* Choose N =24 implying M =12



sin(0.47n)
mn

* Hence h,[n]=

wln], —-12<n<12

where w|n] 1s the n-th coefficient of a
length-25 Kaiser window with f=3.3953

Kaiser Window Lowpass filter designed with Kaiser window
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Summary of the window method of calculating FIR
filter coefficients

m [Step 1| Specify the ‘ideal’ or desired frequency response of filter, Hp(@).

m [Step 2| Obtain the impulse response, /ip(7), of the desired filter by evaluatin.g the
inverse Fourier transform (Equation 7.6b). For the standard frequency selective
filters the expressions for hp(n) are summarized in Table 7.2.

m (Step 3 Select a window function that satisfies the passband or attenuation
specifications and then determine the number of filter coefficients using the
appropriate relationship between the filter length and the transition width, Af
(expressed as a fraction of the sampling frequency).

‘m |Step 4| Obtain values of w(n) for the chosen window function and the values of
the actual FIR coefficients, h(n), by multiplying hp(n) by w(n):

h(n) = hp(n)w(n) (7.12)

It is clear that the window method is |straiggtfnrward and involves a minimal amount |

|of computational effort.| Indeed you could obtain the coefficients with your pocket
calculators. However, a PC-based program is available on the CD in the companion
handbook (see the Preface for details) for calculating h(n). It should be said that the

resulting filter is not optimal, that is in many cases a filter with a smaller number of
coefficients can be designed using other methods.




