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FIR-BPF Design Example
[Ex 1] Plot the magnitude response of a linear phase FIR highpass filter using a
rectangular Window truncation of ideal impulse response hg,[n] of the ideal BP filter to
length N=2M+1 for two different values of M. show that the truncated filter exhibits
oscillatory behavior on both sides of cutoff frequencies at 0.3 Tand 0.7 t rad/sec.
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The impulse response coefficients of the truncated FIR bandpass filter with cutoff
frequencies at 0.71 and 0.3 can be generated using the following MATLAB statements:

n = -M:M;

num = 0.7*sinc(0.7*n) - 0.3*sinc(0.3*n);

The magnitude responses of the truncated FIR bandpass filter for two values of M are shown

below:

Magnitude




FIR-LPF Design Example

[Ex 2] Using the windowed FS approach, design a linear phase FIR
LPF with the tollowing specifications:

Passband edge at 4 KHz,

stopband edge at 6 KHz,

maximum passband attenuation of 0.2 dB,
minimum stopband attenuation of 42 dB,
and sampling frequency of 18 KHz.

Use each of the following windows for the design: Hamming,
Hann, and Blackman. Show the impulse response coefficients and
plot the gain response of the designed filter for each case.
Comment on your results. Do not use the M file fir].



Passband edge at 2 khz,

stopband edge at 4 khz,

maximum passband attenuation of 0.2 dB,
minimum stopband attenuation of 42 dB,
and sampling frequency of 18 khz.

« Filter Design Steps -

(1) Set
O, = (0, +0)/2
wp = 2¢(2 *pi ) /18; (2) Choose window based on specified o
ws = 4* (2 *pi ) /18; (3) Estimate M using

we = (wp + ws)/2; 6pi/18
dw = ws - wp;

Table 10.2: Properties of some fixed window functions.*

Y
A(D~M\

See table

Type of Main Lobe Relative Sidelobe Minimum Stopband Transition
Window Width Apng Level Agy Attenuation Bandwidth Aw
Rectangular Ax/(2M + 1) 13.3dB 20.9dB 092x/M
Barlett dn /(M + 1) 26.5dB See text See text
Hann 8x/(2ZM + 1) 31.5dB 43.9dB 30 /M
Hamming 87/(2M + 1) 42.7 dB 54.5dB 332/ M
Blackman  127/(2M + 1) 58.1 dB 75.3 dB 5.567 /M




L sinc(x) = sin(pi*x)/(pi*x)
§ Hamming

M = cell(3.32%pi/dw) N = 2*M+l;n = -M:M; sin (10.)
num = (6/18) *sinc(6*n/18); L

wh = hamming (N) ";b = num.*wh; * Ldeal lowpass filer -

figure(1); | hypln) =380 < <on

k=0:2*M:stem(k,b); L
title('Impulse Response Coefficients');

xlabel ('Time index n'); ylabel('Amplitude');

figure(2);

[h, w] = freqz(h,1,512];

plot (w/pi, 20*logl0(abs(h))); grid;

xlabel ('\omega/\pi'); ylabel('Gain, in dB');
title('Lowpass filter designed using Hamming window');
axis ([0 1 -80 10]);
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Lowpass filter design using Hamming window: N = 31
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% Hann

M = ceil(3.11*pi/dw) ;N = 2*M+1;n = -M:M;
num = (6/18) *sinc(6*n/18) ;
wh = hann(lN) ';b = num. *wh;

figure(3) ;

k=0:2*M:stem(k, b) ;

title('Impulse Response Coefficients');
xlabel('Time index n'); ylabel('Amplitude’') ;

figure(4) ;

[h, w] = fregz(b,1,512);

plot(w/pi, 20*loglO(abs(h))) ;grid;

xlabel (' \omega/\pi'); ;ylabel('Gain, in dB') ;

title('Lowpass filter designed using Hann window') ;
axis([0 1 -80 10]);

Lowpass filter design using Hann window: N =29
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vagnituae

% Blackman

M = ceil(5.56*pi/dw);N = 2*M+1;n = -M:M;
num = (6/18) *sinc(6*n/18) ;

wh = blackman(N) ';b = num.*wh;

figure(5);

k=0:2*M:stem(k,b) ;

title('Impulse Response Coefficients');

xlabel('Time index n'); ylabel('Amplitude');

figure(6);

[h, w] = fregz(b,1,512);

plot (w/pi, 20*loglO(abs(h))) ;grid;
xlabel('\omega/\pi');ylabel('Gain, in dB');
title('Lowpass filter designed using Blackman window') ;
axis([0 1 -80 101);

Lowpass filter design using Blackman window: N =53

Impulse Hesponse Coetticients Lowpass Tier aesigneda using slackman window
: — . .
0.3} . 0
(o )

0.2} @ -20
©
£

0.1t £ 40
@
(O]

:

Time index n

Comments: The Hann window method results in using the lowest filter order. All filters
meet the requirements of the specifications.



Adjustable Window Functions

e Kaiser Window - The most commonly used
. 2
w{n]:lo{ﬁ\/l W/ M)5 | _pf<n<m
1o (B)

where 3 1s an adjustable parameter and 7y (21)

1s the modified zeroth-order Bessel function

of the first kind: © (1/2)"
I,(u)=1+>[~ 3 1°

r=1
* Note 7,(2) >0 foru =0 N=2M
20 "
e In practice I, ,(u) =1+ Z[(” iﬂ'Z) 1
=1 -

* B controls the mmimum stopband
attenuation of the windowed filter response

* [ 1s estimated using

0.1102(c  —8.7). for o, > 50
B=4 0.5842(c . —21)9-4+0.07886(cx . —21). for 21 =< g <50
0. for o, <21
« Filter order 1s estimated using
. 2.285(Awm) . Note: it provides no
where A® 1s the normalized transition e ©

bandwidth passband ripples



[Ex 3] Repeat Exercise using the Kaiser window. Do not use the M file firl.

8

a, =42, p; = ().5842(@— 2 I)O'4 + 0. )788(1(@ 21)=3.631using Eq. (10.41).

N = using Eq. (10.42).
2.285L4i —
18
N=:941 and we choose 55 ince N must be even. M = 11

beta = 3.631;N = 22 n = -N/2:N/2;

num = (6/18) *sinc(6*n/18) ;

wh = kaiser (N+1,beta) ';b = num.*wh;
figure(l) ;

stem(b) ;

title('Impulse Response Coefficients');

xlabel('Time index n') ;ylabel('Amplitude')

figure(2) ;

[h, w] = fregz(b,1,512);

plot(w/pi, 20*loglO(abs(h))) ;grid;
xlabel('\omega/\pi') ;ylabel('Gain, in dB');
title('Lowpass filter designed using Kaiser window') ;
axis ([0 1 -80 101);
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Exa + Using the windowed Fourier series approach, design a linear-phase FIR lowpass filter of lowest order with
e following specifications: passband edge at 047, stopband edge at 0,6, and minimun stopband attenuation of 42
48, Which window function s appropriate for this design? Show the impulse response coefficients, and plot the gamn
response of the designed filter. Comment on your results. Do ot use the M-file £1rl,



@, =041, 0, =0.67 ,a, =42dB,», =0.57 , A0 =027

We will use the Hann window since it meets the requirements and has the lowest order
from Table 10.2.

== =1555->16= N =32

n = -16:16;

lp = 0.5*sinc(0.5*n) ;wh = hanning(33);

b = 1p.*wh';

figure(l);

k=0:2*n;stem(k,b) ;

title('Impulse Response Coefficients');
xlabel ('Time index n');ylabel (‘Amplitude');
figure(2);

[h, w] = fregz(b,1,512);

plot(w/pi, 20*1loglO(abs(h)));grid;

xlabel (' \omega/\pi') ;ylabel('Gain, in dB');
title('Lowpass filter designed using Hann window') ;
axis(l0 1 -80 101):
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Ex6 {Jsingthe M-file f1x1, design a inear-phase FIR bandpass flter with the following specifications: stopband
edgesat). 55 and .75, passhand edgesat .65 and 085, maximum passband attenuation of 0.2.dB, and minimum
Stopband atienuation of 42 dB. Use each of the following windows for the design: Hamming, Hann, Blackman, and

Kaiser, Show the impulse response cocfficiens, and plot the gaim response of the designed filters for cach case.
Comment on your results.



wp) =0.037,0p) =0.857, 0y =0.557, 09 =0.757 ,a, =0.2dB, ay =42dB

Awy =0, —0g =017, Awy =0, —0yn =0.1r=Aw

332z

=332-5>34: N=2M =68

(a) Hamming window: M = 0]
A

S S N=M =64

(b) Hann: M =
0.1z

5.56x

0.1z

(d) Kaiser: 6, =107% /20 =0.00794 .6, =10™“»

(¢) Blackman: M = =356 556 .. N=2M =112

120 ~0.97724



% Hamming

N = 68;

b = firl(N, [0.6 0.8]);

[H, w] = freqgz(b,1,512);

figure(l);

stem(b) ;

title('Impulse Response Coefficients');
xXlabel ('Time index n');ylabel('h[n]"');
figure(2);

plot (w/pi, 20*loglO(abs(H)));grid;
Xlabel ('\omega/\pi') ;ylabel('Gain, dB');
title('Bandpass filter designed using Hamming window') ;
axis ([0 1 -80 101]);

% Hann

N = 64;

b = firl(N, [0.6 0.8], hanning (N+1)) ;
[H, w] = freqz(b,1,512);

figure(3);

stem(b) ;

title('Impulse Response Coefficients');
xlabel ('Time index n');ylabel('h[n]"');
figure(4);

plot (w/pi, 20*loglO(abs(H)));grid;
xlabel ('\omega/\pi') ;ylabel('Gain, dB');
title('Bandpass filter designed using Hann window') ;
axis ([0 1 -80 10]);



% Blackman

N 112;

b firl(N, [0.6 0.8], blackman (N+1));
[H, w] = freqgz(b,1,512);

figure(5) ;

stem(b) ;

title('Impulse Response Coefficients');
xlabel ('Time index n');ylabel('h[n]"');
figure(6) ;

plot (w/pi, 20*1logl0 (abs(H)));grid;
xlabel ('\omega/\pi');vylabel ('Gain, dB');
title('Bandpass filter designed using Blackman window') ;
axis ([0 1 -80 10]);

% Kalser

[N, Wn, beta, type] = kaiserord([0.6 0.8], [1 0], [0.97724
0.007941]) ;

b = firl(2*N, [0.6 0.8], kaiser (2*N+1, beta));
[H, w] = freqz(b,1,512);

figure(7);

stem(b) ;

title('Impulse Response Coefficients');

xlabel ('Time index n');ylabel('h[n]"');

figure(8) ;

plot (w/pi, 20*loglO(abs(H)));grid;

Xlabel ('\omega/\pi') ;ylabel ('Gain, dB');
title('Bandpass filter designed using Kaiser window') ;
axis([0 1 -80 10]);
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(c) Blackman window using firl
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Realization structures for FIR filters

The FIR filter is characterized by the transfer function, H(z), given by

Realization structures are essentially block (or flow) diagram representations of the
different theoretically equivalent ways the transfer function can be arranged. In most
cases, they consist of an interconnection of multipliers, adders/summers and delay

elements. There are many FIR realization structures, but only those that are in com-
mon use are presented here.,




Transversal structure

The transversal (or tapped delay) structure is depicted in Figure 7.28. The input, x(n),
and output, y(n), of the filter for this structure are related simply by

N-~1
m=0

In the figure, the symbol 7~

x(n)

| -1

(7.39)

. ' represents a delay of one sample or unit of time. Thus
x(n — 1) is x(n) delayed by one sample. In digital implementations, the boxes labelled

x(n—1)

x(n-— 2) . x[n—=(N-1)]

h(0)

h(l)

h(2) A(N=-1)

¥y(n)

z™' could represent shift registers or more commonly memory locations in a RAM.
The transversal filter structure is the most popular FIR structure.

The output sample, y(n), is a weighted sum of the present input, x(n), and N — |
previous samples of the input, that is x(n — 1) to x(n — N). For the transversal structure,
the computation of each output sample, y(n), requires

m N — 1 memory locations to store the N — 1 input samples,

= N memory locations to store the N coefficients,

® N multiplications, and

m N — 1 additions.



Linear phase structure

A variation of the transversal structure is the linear phase structure which takes
advantage of the symmetry in the impulse response coefficients for linear phase FIR
filters to reduce the computational complexity of the filter implementation.

In a linear phase filter, the coefficients are symmetrical, that is|h(n) = £h(N —n —1).

Thus the filter equation can be re-written to take account of this symmetry with a
consequent reduction in both the number of multiplications and additions. For type 1
and 2 linear phase filters, the transfer function can be written as

(N—=1)/2-1 N—1
H(z) = z h(n)[z™" + z7W-1-m] 4+ h( 5 )z‘(”"’/z N odd (7.40a)
n=0
N/2-1
H(iz) = X h(m)[z™" + z= V1= N even (7.40b)
n=0
The corresponding difference equations are given by
(N=-1)/2~1
yiny= D, k) {x(n—k) +xln—(N-1-K])
k=0
+ h[(N - 1)/2]x[n - (N - 1)/2] (7.41a)
(N=-1)/2-1
y(n) = 2 A(K){x(n — k) +x[n— (N—1—k)]} (7.41b)
k=0

A comparison of Equations 7.39 and 7.41 shows that the linear phase structure is com-
putationally more efficient, requiring approximately half the number of multiplica-
tions and additions. However, in most DSP processors Equation 7.39 leads to a more
efficient implementation, because the computational advantage in Equation 7.41 is
lost in the more complex indexing of data implied.



A linear phase FIR filter has seven coefficients which are listed below. Draw the h(0) = h(6) = -0.032
realization diagrams for the filter using (a) direct (transversal) and (b) linear phase h(1) = h(5) = 0.038
structures. Compare their computational complexities.

h(2) = h(4) = 0.048

h(3) =-0.048

h(0) h(1) h(2)  Yh(3) Yh(4) h(5)




