

1

Human Action and Face Recognition Using OpenCV Based on IoT

For Safety and Management School System

Prof. Mohab Mangoud and Asma Shayea
Department of Electrical Engineering, University of Bahrain, Kingdom of Bahrain

Corresponding author: Asma Shayea (e-mail: 202201062@stu.uob.edu.bh)

Abstract
In this paper, we proposed a system for the school environment that uses Open Source Computer Vision
Library (OpenCV) to ensure high safety and management. The system suggests two solutions firstly,
a school attendance system using a face recognition technique for automatically recording attendance
and sending the record to the database using Message Queuing Telemetry Transport (MQTT). We also
present a human recognition system to recognize abnormal or dangerous behaviour in school focusing
on fighting action and for that, we used video classification based on Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN).

Keywords
Human Action Recognition, Video Classification, Haar Cascade Classifier, Convolution Neural
Network, Recurrent Neural Network.

1 INTRODUCTION
These days, safety and security have the highest priority in
different areas of our life such as home safety, school, data
and information, personal privacy, and transportation.
School is the place that joins our future youth with
different goals and ambitions for the future. The
technological revolution can help to increase the level of
security. With the rapidly growing of Internet of Things
(IoT) and the increase of sensor applications, sensors are
expected to be embedded everywhere around us, resulting
in a massive output of continuous and real-time data.
Getting and sharing different types of data has been easier
using low-cost internet connectivity and low-power
devices. Computer vision with IoT can create a high-
security system by utilizing camera devices as a sensors to
detect, recognize or collect the required data and actions
from human behaviour or any other object in the world and
then send these data using the internet to be saved for
analysing or sending alarms to other devices in IoT.

2 MOTIVATION
In recent decades, many unfortunate accidents have
happened at schools resulting in the death or harm of the

students. School is supposed to be a child’s second home.
Parents want to be reassured when sending their children
to an educational environment that is expected to be
monitored under a high level of supervision to achieve the
maximum degree of protection. Every student deserves an
encouraging and safe environment to learn.

3 PROBLEM
Students incidents such as children being forgotten and
locked in school buses, incidents of death after a physical
fighting between students, or shooting incidents in schools
can be prevented with intensive monitoring and continuous
communication with parents. These incidents make us
worry about the loss of safety and security in many
schools. In 2019, a Youth Risk Behaviour Survey (YRBS)
was performed by CDC's on high school students across
the United States. [1] According to YRBS results, 25.5%
of California high school students had been in a physical
fight and 12.3% of students were threatened or injured
with a weapon on school property.

2

Fig. 1: High school students who were in a physical fight by YRBS results [1]

Fig. 2: Students who were threatened or Injured with a weapon by YRBS[1]

4 TOOLS, METHODS, AND ALGORITHMS
For real-time detection, we used a built-in 720p webcam
camera in a MacBook Pro device as an IoT sensor.

4.1 MQTT (Message Queuing Telemetry Transport)
MQTT is a standard publish/subscribe messages protocol
of IoT used to communicate between devices with limited
network bandwidth.[2] Some of the basic concepts of
MQTT include:

1- Publish/subscribe: Also known as pub/sub.
Publishing is the process to send messages while
subscription means receiving those messages by
MQTT clients on a topic that it subscribed to and
related to that topic.

2- Topic and subscription: When the publisher
sends a message on a specific topic, all subscribers
to that topic will get that message.

3- Quality of service levels (QoS): QoS is the level

of the quality of service within two message
parties considering the assurance of data
distribution. The system need will determine
which level needs to be used.

4- Broker: The broker is responsible for controlling

the transformation of information by receiving all
messages from the publisher, filtering them and

then sending them to all interested subscribed
clients.

4.2 Mosquito Broker
The broker is the link that connects between devices and
the system. The subscription handles sessions, missed
messages, and security including authentication and
authorization. There are many different brokers for
different purposes. In our system, we used Mosquito
Broker which is an open source that implements MQTT
protocol and is suitable for all lower power computers to
full servers.

4.3 Haar Cascade Algorithm
Haar cascade is a popular algorithm for facial detection
and recognition. It can detect one or more faces at the same
time. It is a method that use Haar features inputs into a
series of classifier (cascades) to identify faces. This
method identifies only one type (e.g. Edge or lines) but
several of them are used in parallel to detect labels like
eyes and face together. [3] There are four phases:

1- Selecting Haar-like features: A window will
slide over the whole image to apply the Haar-like
feature on each of image window to extract the
features for the human face. It partitions the face
into regions considering the size and brightness
variation. Each feature results in a value that is
calculated by subtracting the addition of the white
zone from the addition of the black zone.

Value = Σ(pixels in black zone) - Σ(pixels in white zone)

Fig. 3: Applying Haar-like features on an image

2- Create an integral image from the original

image: For the large images, instead of calculating
submission for each pixel in the rectangle, we only
have to calculate the four edges of the rectangle.

3- AdaBost: Reduce the number of features that we
do not need in order to identify the face. It works

3

by training some images with faces and others
without faces to classify them, thus getting the
desired information.

4- Cascade Classifier: It gets rid of non-face
candidates and filters them by passing all images’
sub-window into different phases. The candidate
that passes all phases, will be detected as a face.

Fig. 4: Cascade Classifier

4.4 Convolutional Neural Network (CNN)
CNN is an artificial neural network using popularity for
image recognition and classification. It consists of four
types of the following layers:

1- Input layer: Input layers contain image data. It
holds the pixel value of the image.

2- Convolution layer: Images parts (a few pixels at
a time) will pass to this layer to apply some filters
in order to extract features(e.g. edge, object…etc)
and perform a convolution operation calculating
the dot product of the original pixel values for the
input image with weights defined in the filter. The
output will be fed to the next layer as an input.

3- Pooling layer: This layer reduces the spatial

volume for the inputs that come from the
convolutional layer output. The filter will again
pass over the results from the previous layer by
applying Max Pooing and selecting one value
from each of the groups of values (typically
maximum). As the convolution layer generates a
matrix that is smaller than the original image, this
layer will further reduce the size of that matrix.
This will make training much faster by focusing
on the most important features.

4- Fully-connected layers: Classifies images into
categories by training using the output from
previous layers as an input. The output will be
labelled with different probabilities and the height
probability will be the classified label.

Fig. 5: CNN

4.5 Recurrent Neural Network (RNN)
 RNN is a type of neural network used to model sequence
data. Traditionally in neural networks, all input and output
are independent, however, in RNN with the hidden state
features, it can remember some information for sequences.
In other neural networks, each hidden layer has its own
weight and biases whereas in RNN each hidden layer has
the same weight and biases, which reduces the increase
of parameters. Since weight and biases are the same for
hidden layers that means each hidden layer has the same
characteristic. Rather than create many hidden layers, it
will create just one and loop over it as many times as
needed.

Fig. 6: RNN

5 PROPOSED SYSTEM
The proposed system in this paper is a system for the
school environment. This system uses open-source
computer vision (OpenCV) based on IoT to provide two
solutions that would contribute to preventing some of the
primary safety-related incidents that can happen at
schools. In addition, these solutions will be useful to
facilitate work and reduce costs by automating some tasks.
The following are two proposed solutions for the safety
and management school system.

4

5.1 Face Recognition Attendance System
The workflow of this system is clarified in Fig.7. A camera
is placed in the classrooms to record attendance. At 6 a.m.,
the camera will start detecting one or multiple faces in the
room and take attendance by capturing and recognizing
those faces it has in its database. Once it has recognized
any recorded student face, it will automatically mark the
student as in attendance. At 9 a.m., attendance records will
be sent to the server to save. At this time, alarm messages
will be sent to any absent/unrecognized students’ parents
to inform them.

Fig. 7: Face Recognition Attendance System

5.1.1 Implementation and Results
By using Haar Cascade Algorithm as explained in section
4.3, we can recognize multiple faces in a room using a real-
time webcam. Results are shown in the following images:

1- Faces detected and recognized by real-time
webcam.

Fig. 9: Face recognition tested on a video for students in a classroom

Fig. 8: Faces recognition tested by webcam

2- Each recognized student will be marked as

attending.

Fig. 10: Mark recognized the student as present

3- At 9 a.m., attendance data will be sent to the
system by MQTT for updating.

Fig. 11: Record updated

Start

on 6 a.m

End

Detect faces in room

Save attendance record

Send alarm to all absent/

unrecognized students’ parent

Mark as Attending

No

Time is

9 O’clock ?

New face

recognized?

Yes

No

Yes

5

4- For all absent/unrecognized students, their parents
will receive a notification.

Fig. 12: Notification sent

5.2 Fighting Action Recognition System
With human action recognition, we used video
classification to detect any abnormal or dangerous
behaviour from students. In this paper, we will recognize
fighting as the human action. Using the real-time camera,
once the system recognizes any current fighting action
happening at the school, it will send an alarm to the
security office.

Fig. 13: Fight Action Recognition System

5.2.1 Dataset
The dataset for this paper was collected from the Kaggle
for the fighting action. It includes two labels. One folder
contains 100 fighting action videos and the other contains
100 videos for non-fighting action.

5.2.2 Human Action Recognition Implementation

using video classification

Fig. 14: Implementation Flowchart

Using video classification with CNN and RNN algorithms
as explained in sections 4.4 and 4.5, we were able to
achieve good results by recognizing different fighting
actions.

Video is a collection of frames in a specific order. There
are many approaches for applying video classification. The
approach we applied here is CNN-RNN. For RNN, we
used a type of RNN called Long Short Term Memory
(LSTM). It can remember the context for long input
sequences. Following is the implementation of human
fighting action recognition.

1- Preparing Data: This is done by splitting the
dataset into a training set with 80 videos with
fights and 80 videos without fight action, and a
validation set with 20 videos with fights and 20
videos without fight action.

2- Prepare and Read videos to extract frames:
After extracting frames, we set our
hyperparameters as follows:

3-
• Maximum frame count to be 20. As the

number of frames will differ in each video
which would prevent stacking them into
batches, we set a fixed number of 20 frames.
Therefore, if any video has a lesser number of
frames, we will pad the video with zeros.

6

• Image size. Image size must be fixed for each
frame because the neural network needs them
at the same time for the CNN feature extractor.

• The number of features. The number of

extracted features from each video will be
2,048.

Therefore, if we have 200 videos, the total number
of train data will be 20*2048*200.

4- Extract features: With the CNN algorithm, we
passed the frames images to CNN layers to extract
image features thus the output will be a label for
each frame as either fights or noFights as shown in
Fig. 14.

Fig. 15: Label Classified

5- Feed data to LSTM sequence model:
We will use the output of the independent CNN
extracted information and feed them to the LSTM
layer for training which will fuse them temporarily.
LSTM has the ability to identify temporal relations
between these frames.

6- Validation: After training, we evaluated these

results with our test data to check the test accuracy.

5.2.3 Training Results
As shown in Fig. 15 and Fig.16, the accuracy increased to
95% and the loss decreased to 21.04% after 30 Epoch.

Fig. 16: Accuracy in training and validation

Fig. 17: Loss in training and validation

5.2.4 Test Results
For testing, we randomly selected some videos as a sample
from the test dataset to predict and recognize the fight
action. Following are some results for the different videos
selected.

Fig. 18: Result on a non-fighting video – 81% not a fight

7

Fig. 19: Result on a fighting video – 96% is a fight

Fig. 20: Result on a non-fighting video – 80% not a fight

Fig. 21: Result on a fighting video – 84% is a fight

6 CONCLUSION AND FUTURE WORK
This work reviewed the most widely OpenCV algorithms
including Haar Cascade for face recognition, CNN, and
RNN for video classification to recognize human actions.
We are looking to improve these techniques to produce
more accurate results. We also hope, with this technical
revolution, that we can provide a safer environment for the
student in schools and other different areas. We are looking
forward to further developing this system by adding more

actions and objects (e.g. weapons) to be recognized and
detected, in addition to other atypical human behaviours
(e.g. smoking) to prevent any potential risk can happen to
our youth.

7 REFERENCES
[1] Explore Youth Risk Behavior Survey Questions -
United States, 2019 (YRBS)
[2] Soni, Dipa & Makwana, Ashwin. (2017). A SURVEY
ON MQTT: A PROTOCOL OF INTERNET OF
THINGS(IOT).
[3] Aydin, Ilhan & Othman, Nashwan. (2017). A new IoT
combined face detection of people by using computer
vision for security application. 1-6.
10.1109/IDAP.2017.8090171.
[4] Karpathy, Andrej & Toderici, George & Shetty,
Sanketh & Leung, Thomas & Sukthankar, Rahul & Fei-
Fei, Li. (2014). Large-Scale Video Classification with
Convolutional Neural Networks. Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. 1725-1732.
10.1109/CVPR.2014.223.
[5] Wang, Jiang & Yang, Yi & Mao, Junhua & Huang,
Zhiheng & Huang, Chang & Xu, Wei. (2016). CNN-RNN:
A Unified Framework for Multi-label Image
Classification. 2285-2294. 10.1109/CVPR.2016.251.
[6] O'Shea, Keiron & Nash, Ryan. (2015). An Introduction
to Convolutional Neural Networks. ArXiv e-prints.
[7] Shaik, Jahanara. (2021). Detecting autism from facial
image. 10.13140/RG.2.2.35268.35202.
[8] Fan, Yin & Lu, Xiangju & Li, Dian & Liu, Yuanliu.
(2016). Video-based emotion recognition using CNN-
RNN and C3D hybrid networks.
10.1145/2993148.2997632.
[9] Ganesan, Srividhya & Dr, Raju & J, Dr. (2021).
Prediction of Autism Spectrum Disorder by Facial
Recognition Using Machine Learning. Webology. 18. 406-
417. 10.14704/WEB/V18SI02/WEB18291.
[10] Video Fight Detection Dataset | Kaggle

