

1

Smart Parking System Based on Image Processing

Fatema H. Yusuf and Mohab A. Mangoud

Department of Electrical Engineering, University of Bahrain, Kingdom of Bahrain

Corresponding author: Fatema H. Yusuf (e-mail: 20173010@ stu.uob.edu.bh).

Abstract

This paper proposed a smart parking system that helps

drivers in seeking out available parking slots based on

image processing. With the increased number of vehicles

which leads to the parking congestion, finding an empty

parking spaces become a time-consuming task for many

drivers specially during rush hours. From this comes the

importance of implementing a novel camera-based system

that facilities the parking issue to a huge level by detecting

the available parking spaces in real-time. The proposed

system counts the number of empty slots and detects the

vehicles using a single webcam without the need of

changing the parking infrastructure. A webcam is

positioned in a high place that it can see all the parking slots

in the parking area. An image of the parking area is taken

as a reference and then all parking slots are selected. A

webcam is used to record a video of the parking area while

vehicles enter and exit. Both the image and the video are

used to determine whether or not the parking space is

available. The paper shows the implementation of the

proposed system from scratch and then presents the results.

The challenges of developing such a solution are also

mentioned in addition to possible enhancements for future

work.

Keywords: Smart Parking System, Parking Slots, Image

Processing, Image Detection

1. Introduction

Nowadays, the number of drivers has been extremely

increased and that leads to parking congestion specially in

the parking areas while drivers are searching for available

parking slots. According to a new study [1], drivers in New

York City spend what is equivalent to 19 minutes daily

trying to find a vacant parking slot. Parking congestion not

only cause delays, but it also increases air pollution due to

the hazardous vehicle emissions that negatively affect

human health and the environment. Implementing an image

processing-based smart parking system is a novel solution

to this problem. It assists drivers in finding out vacant

parking slots within a short period of time by marking the

free spaces and counting them. Consequently, drivers will

save time and money as the fuel consumption is reduced.

Few references found in the literature about detecting

available parking slots. In [2], a proposed system was

implemented to detect parking spaces with the use of image

processing in Python. This system detects the available

parking spaces by marking them with green outlines when

a vehicle enters the parking area. If there is any occupied

slot, the camera scans the vehicle's number plate which is

then stored in cloud using Tesseract algorithm. Same

procedure will be applied when the parking area is full, with

only changing the outline color into red. Another camera is

used when the vehicle is leaving the lot to scan the number

plate. The parking time is then estimated and based on it, a

bill is provided. Another proposed system [3] searches for

a vacant parking spot depending of the driver's

requirements, such as the first point, the desired location,

and the distance between the parking slot and the location.

If all the parking bays are occupied, the system will inform

the driver. If not, then the system will look for the best

available parking slot based on the driver's request and

provide the parking information to the driver. If the driver

is satisfied with the choice, then the reservation process is

done, else, the process will be repeated. When the

reservation is confirmed, the parking reservation is

activated in the database, and the system will charge the

parking fees for the first hour. The rest of the paper is

divided into the following sections: Section 2 will present

the proposed smart parking system and its methodology.

Section 3 introduces the used software. Challenges are

mentioned in Section 4. Finally, Section 5, contains the

conclusion and future work.

2. Proposed Smart Parking System and Its

Methodology

The figure shown below represents the block diagram of

the system. The work is divided into two parts: selection

and detection. In the selector part, the image of the parking

area is used as a reference to select all the slots. Whereas in

the detector part, live stream video is recorded from a high

position with the use of a webcam. The video is segmented

into frames and then each frame is exposed to several

processes.

2

2.1 Selection of Parking Slots

A picture of the parking area is taken from a high position

and is used as a reference to select the parking slots. Then,

it is supplied to Python software and saved into a variable

after importing the needed libraries as shown in the code

below.

Within a loop, the dimensions of the slots are obtained by

trial-and-error and the slots are outlined in blue. The

following code represents the selection of a single parking

slot, and the same steps are repeated for the remaining

slots, but only changing the dimensions. This process is

illustrated in Fig. 2.

Fig. 2. All parking slots are selected

Parking slot detection consists of three processes which are:

2.2.1 Image Segmentation

In this process, the image of the parking area is segmented

into five images, each representing a parking space, and

then all are converted to greyscale, as shown in the

following figures.

2.2.2 Image Enhancement

To get rid of unnecessary noises, the image is blurred as

shown below.

2.2.3 Image Detection

The edge of the blurred image is detected as shown in the

following figure. The number of white pixels that represent

in the edge is counted and based on it, the status of the

parking slot is determined and then the number of available

spaces is displayed.

Fig. 1. Block diagram

import cv2

import numpy as np

img=cv2.imread('image0.jpeg')

while True:

pts = np.array([[230, 530], [30, 670], [245, 670],

[380, 530]], np.int32)

pts = pts.reshape((-1, 1, 2)) cv2.polylines(img, [pts],

True, (255, 0, 0), 2)

#Repeat to select the remaining slots

Fig. 4. Grayscale

transformed image

Fig. 3. Cropped image

Fig. 5. Blurred image

Fig. 6. Edge detection

3

3. System Software

The software used for this proposed system is Pycharm

with the use of OpenCV library. PyCharm is an Integrated

Development Environment (IDE) that has all the required

programming functions and tools in Python language [4],

including code editor, compiler, and debugger.

As mentioned in [5], computer vision (CV) is a branch of

computer science by which the computer can understand

images and videos, the way they are stored, and how to get

data from them. Whereas OpenCV shorts for Open Source

Computer Vision Library, by which an enormous

programming functions can be used. OpenCV plays an

important role in artificial intelligence (AI) specially in the

context of image processing. Recently, it has been widely

used to detect objects in real-time.

4. Results

The proposed system has been tested in The Market Mall

parking area in Bahrain and the results were satisfactory.

The figure shown below represents one of the results in

which one parking space is available and marked in green.

Fig. 7. Parking area with four busy slots and one available

slot

Fig. 8 shows that even if a person is walking through the

parking space, the status of that space is still considered

available because the number of white pixels is not large

enough. So, only if there is something as large as the

vehicle then the system considers the slot to be occupied.

Fig. 8. A person walks through the parking slot

4. Challenges

In this project, two challenges were faced. The first

challenge was the lack of experience in the Python

programming language, but by searching and seeking help

from experts, this challenge was overcome. The second

challenge was the difficulty of taking an image of the

parking area from the exact top, so it was not easy to

determine the dimensions of the parking spaces. However,

on the basis of trial-and-error, approximate dimensions

were determined.

7. Conclusion and Future Work

With the increased number of vehicles and parking

congestion, implementing the proposed system becomes

crucial and beneficial for many drivers, especially during

rush hours. The system can help drivers in saving their

times, avoiding delays, and save money, as they will not

need to fill their vehicles with fuel too frequently. Not only

the drivers will benefit from the proposed system, but also

the environment as the air pollution will be reduced due to

the reduction of car emissions. Although the system is easy

to implement, eco-friendly and cost-efficient, it can be

further improved by building a mobile application on which

the positions of the available slots are displayed besides the

location of the parking area providing the shortest path to

the nearest available parking slot. Moreover, using an

algorithm to detect the available slots automatically rather

than manually getting the coordinates of the slots can

enhance the proposed system.

References

[1] A. Griffin. "Queens Drivers Have an Easier Time

Finding Parking than Most NYC Drivers: Study." LIC

Post. https://licpost.com/queens-drivers-have-an-

easier-time-finding-parking-than-most-nyc-drivers

(accessed Jan. 1, 2023).

[2] S. Bhatt et al., "Smart Parking System Using Image

Processing," IRJET, vol. 7, no. 6, pp. 1951-1955,

https://licpost.com/queens-drivers-have-an-easier-time-finding-parking-than-most-nyc-drivers
https://licpost.com/queens-drivers-have-an-easier-time-finding-parking-than-most-nyc-drivers

4

Jun. 2020. [Online]. Available:

https://www.academia.edu/44258255/IRJET_Smart_

Parking_System_Using_Image_Processing

[3] A. M. Said, A. E. Kamal, and H. Afifi, “An intelligent

parking sharing system for green and smart cities based

IoT,” Computer Communications, vol. 172. Elsevier

BV, pp. 10–18, Apr. 2021. doi:

10.1016/j.comcom.2021.02.017.

[4] “PyCharm: the Python IDE for Professional

Developers by JetBrains.” JetBrains.

https://www.jetbrains.com/pycharm/ (accessed

December 28, 2022).

[5] R. Kulhary. "OpenCV - Overview." GeeksforGeeks.

https://www.geeksforgeeks.org/opencv-overview/

(accessed December 28, 2022).

https://www.academia.edu/44258255/IRJET_Smart_Parking_System_Using_Image_Processing
https://www.academia.edu/44258255/IRJET_Smart_Parking_System_Using_Image_Processing
https://www.jetbrains.com/pycharm/
https://www.geeksforgeeks.org/opencv-overview/

Appendices
Appendix A: Selector Part Code

import cv2

import numpy as np

img=cv2.imread('image0.jpeg')

while True:

 pts = np.array([[230, 530], [30, 670],

 [245, 670], [380, 530]],

 np.int32)

 pts = pts.reshape((-1, 1, 2))

 cv2.polylines(img, [pts], True, (255, 0, 0), 2)

 # select the remaining parking slots ..

 pts = np.array([[380, 530], [245, 670],

 [465, 670], [525, 530]],

 np.int32)

 pts = pts.reshape((-1, 1, 2))

 cv2.polylines(img, [pts], True, (255, 0, 0), 2)

 pts = np.array([[525,530], [465,670],

 [683, 670], [667, 530]],

 np.int32)

 pts = pts.reshape((-1, 1, 2))

 cv2.polylines(img, [pts], True, (255, 0, 0), 2)

 pts = np.array([[667, 530], [683, 670],

 [900, 670], [810, 530]],

 np.int32)

 pts = pts.reshape((-1, 1, 2))

 cv2.polylines(img, [pts], True, (255, 0, 0), 2)

 pts = np.array([[810, 530], [900, 670],

 [1070, 670], [960, 530]],

 np.int32)

 pts = pts.reshape((-1, 1, 2))

 cv2.polylines(img, [pts], True, (255, 0, 0), 2) #lot#5

 cv2.imshow("Image", img)

 cv2.waitKey(1)

Appendix B: Detector Part Code

import cv2

import numpy as np

cap = cv2.VideoCapture(0)

img=cap.read()

while True:

 ret, frame = cap.read()

 cv2.imshow('frame', frame)

 if cv2.waitKey(1) == ord('q'):

 break

 free=0

 if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT): #curent frames =

total frames that are in the video

 cap.set(cv2.CAP_PROP_POS_FRAMES, 0) #reset frames if they reach the max. frames

that the video has (loop the video)

 success, img = cap.read() # to get the frame from the video

 # select the parking slots

 lw, uw, x1, x2, y1, y2, x, w = 95, 65, 98, 15, 235, 280, 60, 80

 for f in range (5):

 pts = np.array([[x1,y1],[x2,y2],[x2+lw,y2],[x1+uw,y1]],np.int32)

 x1,x2 = x1+uw+2 , x2+lw

 pts = pts.reshape((-1, 1, 2))

 crop = img[y1:y2, x:x+w] #crop the image into the selected parts

 grayEdge = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY) # convert to grayscale

 blur = cv2.GaussianBlur(grayEdge, (3, 3), 0) # blur

 edges = cv2.Canny(blur, 100, 200) # canny edge detection

 pix = cv2.countNonZero(edges) # counting the white pixels

 x=x+w

 if pix in range(280, 1000): # draw a red rectangle if the parking slot is busy

 cv2.polylines(img, [pts], True, (0, 0, 255), 2)

 else:

 free += 1

 cv2.polylines(img, [pts], True, (0, 255, 0), 2) # draw a green rectangle if the parking slot is busy

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img, 'Free Parking Slots: ' + str(free) , (10, 30), font, 0.65, (0,255,255), 2)

 # Display the resulting frame

 cv2.imshow('video', img)

cap.release()

cv2.destroyAllWindows

