## EEG372 (Communication systems I)

### Dr. Mohab Mangoud

## Assignment (4)

### Question (1)

Classify the following signals as energy signals or power signals. Find the normalized energy or normalized power of each.

| (a) | $x(t) = A \cos 2\pi f_0 t$                                     | for $-\infty < t < \infty$                                   |
|-----|----------------------------------------------------------------|--------------------------------------------------------------|
| (b) | $x(t) = \begin{cases} A \cos 2\pi f_0 t \\ 0 \end{cases}$      | for $-T_0/2 \le t \le T_0/2$ , where $T_0 = 1/f_0$ elsewhere |
| (c) | $x(t) = \begin{cases} A \exp\left(-at\right) \\ 0 \end{cases}$ | for $t > 0, a > 0$<br>elsewhere                              |
| (d) | $x(t) = \cos t + 5 \cos 2t$                                    | for $-\infty < t < \infty$                                   |

# Question (2)

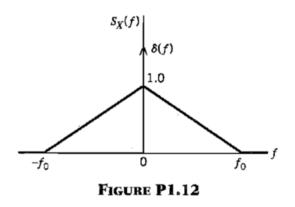
Determine which, if any, of the following functions have the properties of autocorrelation functions. Justify your determination. [Note:  $\mathcal{F}{R(\tau)}$  must be a nonnegative function. Why?]

| (a) | $x(\tau) = \begin{cases} 1 \\ 0 \end{cases}$  | for $-1 \le \tau \le 1$<br>otherwise |
|-----|-----------------------------------------------|--------------------------------------|
| (b) | $x(\tau) = \delta(\tau) + \sin 2\pi f_0 \tau$ |                                      |
| (c) | $x(\tau) = \exp\left( \tau \right)$           |                                      |
| (d) | $x(\tau) = 1 -  \tau $                        | for $-1 \le \tau \le 1, 0$ elsewhere |

### Question (3)

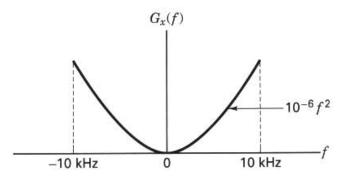
The power spectral density of a random process X(t) is shown in Figure P1.12. It consists of a delta function at f = 0 and a triangular component.

- (a) Determine and sketch the autocorrelation function  $R_X(\tau)$  of X(t).
- (b) What is the DC power contained in X(t)?
- (c) What is the AC power contained in X(t)?
- (d) What sampling rates will give uncorrelated samples of X(t)? Are the samples statistically independent?



### Question (4)

The two-sided power spectral density,  $G_x(f) = 10^{-6} f^2$ , of a waveform x(t) is shown in



- (a) Find the normalized average power in x(t) over the frequency band from 0 to 10 kHz.
- (b) Find the normalized average power contained in the frequency band from 5 to 6 kHz.

## Question (5)

(1) A signal s(t) having power spectral density  $\Phi_s(f) = 5\Pi\left(\frac{J}{10,000}\right)$  is passed through a channel in which additive white Gaussian noise n(t) and interference i(t) are present, resulting in a received signal of r(t) = s(t) + i(t). You may assume that the signal, noise and interference are all independent and that the noise has power spectral density  $\Phi_n(f) = 0.1$ , and the interference has power spectral density

$$\Phi_i(f) = 100\Lambda\left(\frac{f - 2000}{100}\right) + 100\Lambda\left(\frac{f + 2000}{100}\right).$$

The received signal is then filtered twice, first to bandlimit the signal and then to excise the interference, according to the following block diagram:

$$r(t) = s(t) + n(t) + i(t)$$

$$H_1(f) = \Pi\left(\frac{f}{10,000}\right)$$

$$y(t)$$

$$H_2(f) = \Pi\left(\frac{f}{3800}\right) + \Pi\left(\frac{f - 3550}{2900}\right)$$

$$+\Pi\left(\frac{f + 3550}{2900}\right)$$

- (a) Find the Signal to Interference and Noise Ratio (SINR) of r(t)
- **(b)** Find the SINR of y(t).
- (c) Find the SINR of z(t).

