Embedded Machine Learning for Person Detection

Presented by: Ana Ferraz

Contents

- Introduction
- Workflow
- Hardware used
- Visual Wake Words Dataset
- Application Architecture
- Person Detection
- Training a Model
- Conclusion and future work

Introduction

- TinyML Review previous seminar
- ML at the embedded edge devices
- Embedded devices have serious constraints
- Various sensors built-in or connected
- Recent new field

Deep Learning Workflow

- Decide the goal
- Collect a Dataset
- Design a Model Architecture
- Train the model
- Convert the Model
- Run Inference
- Evaluate and Troubleshoot

Hardware (previous presentation)

Apollo3 (<u>Apollo3, 2021</u>),

- STM32F Discovery (<u>STM32F, 2021</u>),
- ST <u>IoT</u> Discovery (<u>ST IoT Discovery, 2021</u>),
- ECM3532 AI Sensor Neuro sensor processor (NSP) (<u>ECM3532, 2021)</u>,
- Arduino Nano 33 BLE Sense (<u>Arduino Nano 33,</u> 2021),
- OpenMV Cam H7 Plus (<u>OpenMV, 2021</u>),
- Himax EW-I Plus (<u>Himax, 2021</u>),
- Thunderboard Sense 2 (<u>Thunderboard Sense 2</u>, <u>2021</u>),
- Sony's Spresense TinyML Board (<u>Sony's Spresense</u> <u>TinyML Board, 2021</u>),
- Arduino Portenta H7 (<u>Arduino Portenta H7, 2021</u>),
- Raspberry Pi 4B (<u>Raspberry Pi 4B, 2021</u>),

0

- Nvidia Jetson Nano (Nvidia Jetson Nano, 2021),
- CC1352P Launchpad (CC1352P Launchpad, 2021),

- ESP-EYE (<u>ESP-EYE, 2021</u>),
- GAP8 (<u>GAP8, 2021</u>),
- GAP9 (<u>GAP9, 2021</u>),
- Al-deck 1.1 (<u>Al-deck 1.1, 2021</u>),
- Seeed Wio Terminal (Seeed Wio Terminal, 2021),
- Agora Product Development Kit (<u>Agora Product</u> <u>Development Kit, 2021</u>),
- Pico4ML BLE (Pico4ML BLE, 2021),
- MKR Video 4000 (<u>MKR Video 4000, 2021</u>),
- Nicla Sense ME (Nicla Sense ME, 2021),
- Nordic Semi nRF52840 DK (<u>Nordic Semi nRF52840</u> <u>DK, 2021</u>),
- Nordic Semi Thingy:91 (<u>Nordic Semi Thingy:91,</u> <u>2021</u>),
- XCore.ai (XCore.ai, 2021),

٠

FRDM-K64F (<u>FRDM-K64F, 2021</u>).

Hardware Board

- Arduino Nano 33 BLE Sense
 - 9 axis inertial sensor
 - Humidity and Temperature
 - Barometric
 - Microphone
 - Gesture
 - Proximity, light color, intensity
- 32-bit ARM[®] Cortex[®]-M4 CPU
- 64MHz
- 1MB program memory
- SRAM 256KB

Hardware Camera

- Can be used in Arduino, Raspberry Pi, etc.
- 2 megapixels image
- SPI interface for the sensor configuration
- Output format: FAW, YUV, RGB, JPEG

Software and Libraries (previous presentation)

TensorFlow Lite

TensorFlow Lite

(TFL)

microTensor

uTensor

Edge Impulse

PyTorch Mobile

Embedded Learning Library (ELL)

STM32Cube.AI

μTVM: MicroTVM

Software Used

- Google Cloud Platform
- TensorFlow Lite Training and Conversion
- Arduino upload to hardware

Google Cloud Platform

Computer application

<

Dataset Used

- Visual Wake Words [3]
- Re-labeling COCO dataset
 - Label 1 has at least one object bounding box
 - Label 2 doesn't have the object bounding box
- Small bounding boxes (<0.5%) excluded

(a) 'Person'

[4] https://cocodataset.org/#home

Application Architecture

- Obtain an input
- Preprocess the input to extract features
- Run inference
- Post process the model's output
- Use resulting information to act

Main routines

```
// The name of this function is important for Arduino compatibility.
void loop() {
 // Get image from provider.
 if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels,
                           input->data.uint8)) {
   TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed.");
 }
 // Run the model on this input and make sure it succeeds.
 if (kTfLiteOk != interpreter->Invoke()) {
   TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed.");
 3
 TfLiteTensor* output = interpreter->output(0);
 // Process the inference results.
 uint8_t person_score = output->data.uint8[kPersonIndex];
 uint8_t no_person_score = output->data.uint8[kNotAPersonIndex];
 RespondToDetection(error_reporter, person_score, no_person_score);
```

alignas(8) const unsigned char g_person_detect_model_data[] = { 0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x84, 0x95, 0x04, 0x00, 0xec, 0x5b, 0x03, 0x00, 0xd4, 0x5b, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x5a, 0x00, 0x00, 0x00, 0xc4, 0x5b, 0x03, 0x00, 0xac, 0x5b, 0x03, 0x00, 0x94, 0x5b, 0x03, 0x00, 0x84, 0x59, 0x03, 0x00, 0x74, 0x55, 0x03, 0x00, 0x64, 0x55, 0x02, 0x00, 0x54, 0x51, 0x02, 0x00, 0x44, 0x48, 0x02, 0x00, 0x34, 0x44, 0x02, 0x00, 0x24, 0x42, 0x02, 0x00, 0x94, 0x3d, 0x02, 0x00, 0x84, 0x3b, 0x02, 0x00, 0x74, 0xfb, 0x01, 0x00, 0xe4, 0xf6, 0x01, 0x00, 0xd4, 0xb6, 0x01, 0x00, 0xc4, 0xb4, 0x01, 0x00, 0xb4, 0x74, 0x01, 0x00, 0xa4, 0x72, 0x01, 0x00, 0x94, 0x70, 0x01, 0x00, 0x84, 0x6e, 0x01, 0x00, 0x74, 0x2e, 0x01, 0x00, 0x64, 0xee, 0x00, 0x00, 0x54, 0xec, 0x00, 0x00, 0xc4, 0xe7, 0x00, 0x00, 0xb4, 0xe5, 0x00, 0x00, 0xa4, 0xc5, 0x00, 0x00, 0x94, 0xc4, 0x00, 0x00, 0x44, 0xc2, 0x00, 0x00, 0x34, 0xb2, 0x00, 0x00, 0x24, 0xb1, 0x00, 0x00, 0x14, 0xa9, 0x00, 0x00, 0x84, 0xa8, 0x00, 0x00, 0x54, 0xa7, 0x00, 0x00, 0x44, 0xa3, 0x00, 0x00, 0xb4, 0xa2, 0x00, 0x00, 0x84, 0xq1, 0x00, 0x00, 0x34, 0xq1, 0x00, 0x00, 0x2c, 0xq1, 0x00, 0x00, 0x24, 0xa1, 0x00, 0x00, 0x1c, 0xa1, 0x00, 0x00, 0x14, 0xa1, 0x00, 0x00, 0x0c, 0xa1, 0x00, 0x00, 0x04, 0xa1, 0x00, 0x00, 0xfc, 0xa0, 0x00, 0x00, 0xf4, 0xa0, 0x00, 0x00, 0xec, 0xa0, 0x00, 0x00, 0xe4, 0xa0, 0x00, 0x00, 0xdc, 0xa0, 0x00, 0x00, 0x8c, 0xa0, 0x00, 0x00, 0x84, 0xa0, 0x00, 0x00, 0x7c, 0xa0, 0x00, 0x00, 0x74, 0xa0, 0x00, 0x00, 0x6c, 0xa0, 0x00, 0x00, 0x64, 0xa0, 0x00, 0x00, 0x5c, 0xa0, 0x00, 0x00, 0x4c, 0x9e, 0x00, 0x00, 0x1c, 0x9e, 0x00, 0x00, 0x14, 0x9e, 0x00, 0x00, 0x74, 0x9d, 0x00, 0x00, 0xe4, 0x9c, 0x00, 0x00, 0x8c, 0x9c, 0x00, 0x00, 0x7c, 0x9a, 0x00, 0x00, 0xec, 0x99, 0x00, 0x00, 0x5c, 0x99, 0x00, 0x00, 0x54, 0x99, 0x00, 0x00, 0x4c, 0x99, 0x00, 0x00, 0x44, 0x99, 0x00, 0x00, 0x3c, 0x99, 0x00, 0x00, 0xe4, 0x98, 0x00, 0x00, 0xd4, 0x18, 0x00, 0x00, 0xc4, 0x16,

// Switch the person/not person LEDs off
digitalWrite(LEDG, HIGH);
digitalWrite(LEDR, HIGH);

// Flash the blue LED after every inference.
digitalWrite(LEDB, LOW);
delay(100);
digitalWrite(LEDB, HIGH);

// Switch on the green LED when a person is detected, // the red when no person is detected if (person_score > no_person_score) { digitalWrite(LEDG, LOW); digitalWrite(LEDR, HIGH); } else { digitalWrite(LEDG, HIGH); digitalWrite(LEDR, LOW); }

Model data array

Detection responder

Main Loop

Deploying to Microcontrollers

Camera e Board connections

Camera Pin	Arduino Board Pin
CS	D7
MOSI	D11
MISO	D12
SCK	D13
GND	GND
VCC	3.3V
SDA	A4
SCL	A5

Deploying to Microcontrollers

Person Score	No Person Score	Explanation
-82	+82	High confidence in No Person Score
+49	-50	High confidence in Person Score
-28	+28	Slight confidence in Person Score
+28	-28	Slight confidence in No Person Score

	/dev/cu.usbmodem14201	
		Send
Starting capture		
Image captured		
Reading 2056 bytes from Arducam		
Finished reading		
Decoding JPEG and converting to greyscale		
Image decoded and processed		
Person score: -93 No person score: 93		
Starting capture		
Image captured		
Reading 3080 bytes from Arducam		
Finished reading		
Decoding JPEG and converting to greyscale		
Image decoded and processed		
Person score: -56 No person score: 56		
Starting conture		
O Autoscroll O Show timestamp	Newline 😌 9600 baud 😌 C	lear output

Arduino Project Hub link

Google Cloud Platform

- Picking a Machine
- Google Cloud Platform Instance
- Training the model for other categories

Credits Ø)
\bigcirc	\$400.00 Remaining credits
	Out of \$400.00
Remaining credits	
Free Trial	\$300.00
Organization Free Bonus	e Trial \$100.00
→ Credit details	

\$1,519.14 monthly estimate

That's about \$2.081 hourly Pay for what you use: No upfront costs and per second billing Networking cost also applies. Learn more

Machine configuration			^	
Machine type * n1-standard-4 (4 vCPUs, 15 GB RAM)		•	0	
GPU type	Number of GPUs ——— 1		•	

Exporting to TensorFlow Lite

Series of commands:

- Exporting to a GraphDef Protobuf File
- Freezing the Weights
- Quantizing and Converting to TensorFlow Lite
- Converting to a C Source File

Conclusion

- TensorFlow Lite broadens the reach of ML by enabling the transfer of deep learning models into tiny embedded systems.
- The TinyML process of training simplified models in the cloud, converting the files and uploading into the embedded device poses different challenges than traditional ML.
- The hardware/software/libraries compatibility, code compilation, driver updates are also added challenges to TinyML systems.
- Trade accuracy and size of the model

References

[1]	P. Ray, "A review on TinyML: State-of-the-art and prospects," Journal of King Saud University, vol. 34, no. 4, pp. 1595-1623, 2022.
[2]	P. Warden and D. Situnayake, TinyML - Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers, O'Reilly, 2019.
[3]	A. Chowdhery, P. Warden, J. Shlens, A. Howard and R. Rhodes, "Visual Wake Words Dataset," Google Research, 2019.
[4]	"COCO - Common Objects in Context," [Online]. Available: https://cocodataset.org/#home. [Accessed May 2022].
[5]	Arduino Store, "Arduino Nano 33 BLE Sense with headers," [Online]. Available: https://oreil.ly/6qlMD. [Accessed April 2022].
[6]	Arducam, "Arducam Mini OV2640 2MP," [Online]. Available: https://oreil.ly/LAwhb. [Accessed April 2022].
[7]	"tf-slim," [Online]. Available: https://github.com/google-research/tf-slim. [Accessed May 2022].
[8]	R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang and P. Warden, "TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems," in MLSys Conference, San Jose, 2021.
[9]	D. L. Dutta and S. Bharali, "Tiny ML Meets IoT: A Comprehensive Survey," Internet of Things, 2021.