
1

Smart Parking System Based on Image Processing

and Deep Learning

Fatema H. Yusuf and Mohab A. Mangoud

Department of Electrical Engineering, University of Bahrain, Kingdom of Bahrain

Corresponding author: Fatema H. Yusuf (e-mail: 20173010@ stu.uob.edu.bh).

Abstract

This paper proposes a smart system that utilizes image

processing and deep machine learning to address the

parking issue for drivers. Finding an available parking slot

has become increasingly difficult and time-consuming due

to the growing number of vehicles, resulting in parking

congestion. To alleviate this problem, the paper suggests

implementing a novel camera-based system that can detect

available parking spaces in real-time using deep machine

learning techniques.

The proposed system is trained on the "COCO" dataset, an

open-source dataset containing various objects, including

different types of vehicles, using the YOLO v3 algorithm.

By utilizing a webcam, the system can detect vehicles

within the parking area and accurately count the number of

available and occupied parking slots. The webcam is

strategically positioned at a static and elevated location to

capture the entire parking area. An initial image of the

parking area is captured and used as a reference to identify

all the parking slots.

During operation, the webcam records a real-time video of

the parking area while the system detects vehicles within it.

This enables the system to continuously update and provide

an accurate count of free and occupied parking slots. The

paper demonstrates the step-by-step implementation of the

proposed system and presents the obtained results.

Overall, the paper highlights the effectiveness of the

proposed system in addressing parking issues through the

integration of image processing, deep machine learning, and

real-time video analysis. It also emphasizes the potential for

further enhancements and advancements in future research.

Keywords: Smart Parking System, Parking Slots, Image

Processing, Object Detection, YOLO

1. Introduction

Recently, there has been a significant increase in the number

of vehicles, resulting in traffic congestion. One major

contributor to traffic congestion is parking cruising. A recent

study [1] shows that between 9% and 56% of traffic is

caused by drivers searching for available parking spaces.

Another study [2] conducted in New York City reveals that

drivers spend an average of 19 minutes each day looking for

parking spaces. This cruising for parking wastes valuable

time, with an average of 6 minutes spent in the search. In

addition to time wasted, this search for parking also has

negative environmental impacts, as vehicles emit harmful

emissions like CO2, which can adversely affect human

health. To address this problem, an image processing-based

smart parking system is proposed as a potential solution. This

system aims to assist drivers in quickly locating available

parking spaces by detecting vehicles in the parking area and

counting the number of vacant slots. By implementing such a

system, we can reduce traffic congestion, save time, and

minimize fuel consumption, ultimately benefiting both

individuals and the environment.

One of the proposed smart parking systems [3] utilizes the

HSV color segmentation method to obtain the background

image of the parking area. The image undergoes

preprocessing, including median filters and background

detection, followed by background subtraction during the

detection process. Various image processing techniques such

as blurring, thresholding, and filtering are applied to enhance

the detection performance. The system focuses on the region

of interest (ROI) corresponding to the parking spaces to

detect objects. By comparing the ratio of white pixels in each

ROI to the total number of pixels with a threshold value, the

system classifies whether the parking space is occupied or

not. In another proposed system [4], an artificial vision

technique is employed to extract video footage of a specific

parking area, which is then processed using MATLAB.

Object-Oriented Programming is used to count the available

parking slots and determine their status. The results are

displayed visually on a website. Additionally, a different

proposed system [5] improves upon the YOLO v3 algorithm

to detect vehicles and parking spaces using three datasets

with images captured in different weather conditions. The

YOLO v3 algorithm is enhanced by adding a residual

structure to extract features from images containing both

parking spaces and vehicles. Four feature maps are employed

in the detection process, enabling complex networks to

extract additional features. The rest of the paper is divided

into the following sections: Section 2 will present the

proposed smart parking system and its methodology. Section

3 introduces the used algorithm. Results are shown in

Section 4. Finally, Section 5, contains the conclusion and

future work.

2

2. Proposed Smart Parking System and

Its Methodology

The figure below illustrates the block diagram of the

system. The workflow starts with a selection process, where

all parking slots are initially marked as free (represented by

the color green). For the detection process, a live video

stream of the parking area is captured using a webcam

positioned at a high vantage point. The YOLO v3

algorithm, previously trained on the publicly available

"COCO" dataset containing various classes, including

different types of vehicles, is utilized to detect vehicles in

the parking area. Each frame of the video undergoes the

detection process.

Fig. 1. Block Diagram

2.1 Threshold selection

The threshold value for the area of an occupied parking slot

is set to 1600. Additionally, initial threshold values are set

for the confidence, score, and Intersection over Union

(IOU).

2.2 Selection of Parking Slots

Instead of manually specifying the coordinates for

irregularly shaped parking slots, rectangular regions are

chosen as representations of the slots. These rectangles are

selected within the slots, although they may not align

precisely with the exact borders of the slots. The coordinates

of these rectangles are then supplied to Python software, and

after importing the necessary libraries, they are saved into

variables. In the visualization, all the parking slots are

marked in green to indicate their initial status as free slots.

Fig. 2. Parking slots selection

2.3 Vehicle Detection

After loading the configuration and weight files of the

pretrained YOLO v3 model, as well as the labels of the

objects, a while loop is created to perform object detection

on each frame of the video. A 4D blob array is generated to

store and process the frames, which are converted into input

images. The blob is then set as the input to the network, and

all the layer names are retrieved.

Next, a for loop iterates over each output layer of the

network. The object detection is refined by focusing only on

specific types of vehicles such as cars, buses, trucks,

motorbikes, and bicycles, while disregarding other objects.

Within the loop, the class IDs, scores, and confidences of the

detected objects are extracted. Only objects with a

confidence equal to or above the defined threshold value are

considered.

The bounding box coordinates, class IDs, and confidences

are updated accordingly in case any disregarded objects are

encountered. To avoid multiple bounding boxes around a

single object, a non-maxima suppression technique is

applied. Bounding box rectangles are then drawn around the

detected vehicles labeled with the word “busy”, as illustrated

in the provided figure.

Fig. 3. Vehicles detection

3

A polygon is created for each bounding box using its

coordinates and stored in a variable called "POLYGON".

This polygon is then used to calculate the intersection area

between each bounding box and each parking slot

polygon. If the calculated area exceeds the threshold value

for the occupied area, the slot is considered busy and

marked in red, while also incrementing the busy counter.

Otherwise, if the area is below the threshold, the slot's

status remains free, which is the default. The number of

free parking slots is determined by subtracting the number

of busy slots from the total number of slots, which is set at

the beginning.

3. YOLO Algorithm

YOLO stands for "You Only Look Once," and as the name

suggests, this algorithm examines the input image only

once to make predictions. It achieves this by utilizing a

single neural network and performing a forward

propagation pass. The network divides the input image into

grids, with each grid representing a bounding box. The

probabilities for each region serve as the weights for the

bounding boxes. To prevent multiple bounding boxes from

being drawn around the same object, a technique called

"non-maxima suppression" is employed. YOLO consists of

24 convolution layers and two fully connected layers, all of

which are organized based on their specific use [6].

4. Results

The proposed system was tested in The Market Mall parking

area in Bahrain, and the results were satisfactory compared

to other proposed systems described in [3]. However, it is

worth noting that the compared system lacks the capability

to detect vehicles in the parking area during nighttime. This

limitation may be attributed to the dataset used, which does

not include images of vehicles in various weather conditions.

As a result, the compared system is unable to effectively

detect vehicles at night. The figure below illustrates the test

results of our model in a parking area with three occupied

slots during nighttime.

Fig. 4. Vehicles detection during nighttime

Additionally, I tested another smart parking system that

determines the availability of parking spaces based on the

number of white pixels in each slot. If a parking slot contains a

sufficient number of white pixels, it indicates that the slot is

occupied by a vehicle. Conversely, if the number of white

pixels is low, the slot is considered free. This system performs

well during the daytime. However, it exhibited poor

performance at night, as depicted in the following figure.

Fig. 5. Fail in detecting vehicles during nighttime

Another limitation of the proposed system, which relies on

the number of white pixels, is that it may mistakenly classifya

parking slot as occupied when people are passing through the

area or when there is a rain spot present in the slot. This is

because the image of the slot would have a significant

number of white pixels, even if it does not actually contain a

vehicle.

Although the confidence values obtained by our proposed

system are relatively low in darker conditions, as observed

in Fig. 6, the system performs well in detecting vehicles

during both day and night, as indicated by the following

figures.

Fig. 6. Parking area with three busy slots

4

Fig. 7. Parking area with one busy slot

Fig. 8. Parking area with three busy slots

5. Conclusion and Future Work

Implementing the proposed system can pave the way for

reducing parking cruising as the number of vehicles continues

to increase. Drivers can benefit from the system by saving

time, avoiding frustration while searching for parking spaces,

and reducing fuel consumption. Additionally, the system

contributes to protecting people from respiratory diseases by

minimizing harmful emissions and promoting environmental

conservation. While the proposed system successfully

operates in different conditions and detects various types of

vehicles, further improvements can be made. Integration of a

user-friendly website to visualize the availability of parking

slots and provide directions to the nearest open slot would

enhance usability. Additionally, enhancing the system's

confidence by incorporating more datasets with varied

lighting conditions would be beneficial. Furthermore,

automating the parking slot selection process would make the

system scalable and more practical.

6. References

[1] Y. Zhu, X. Ye, J. Chen, X. Yan, and T. Wang,

“Impact of Cruising for Parking on Travel Time of Traffic

Flow,” Sustainability, vol. 12, no. 8. MDPI AG, p. 3079,

Apr. 12, 2020. doi: 10.3390/su12083079.

[2] A. Griffin. "Queens Drivers Have an Easier Time

Finding Parking than Most NYC Drivers: Study." LIC Post.

https://licpost.com/queens-drivers-have-an- easier-time-finding-

parking-than-most-nyc-drivers (accessed Jun. 5, 2023).

[3] A. H. Pratomo, W. Kaswidjanti, A. S. Nugroho, and S.

Saifullah, “Parking detection system using background

subtraction and HSV color segmentation,” Bulletin of Electrical

Engineering and Informatics, vol. 10, no. 6. Institute of

Advanced Engineering and Science, pp. 3211–3219, Dec. 01,

2021. doi: 10.11591/eei.v10i6.3251.

[4] D. L. Gómez-Ruíz, D. Espejel-García, G. Ramírez-

Alonso, V. V. Espejel-García, and A. Villalobos-Aragón,

“Implementation of an Available Parking Space Detection

System in Hectic Parking Lots,” Journal of Transportation

Technologies, vol. 11, no. 04. Scientific Research Publishing,

Inc., pp. 688–701, 2021. doi: 10.4236/jtts.2021.114043.

[5] X. Ding and R. Yang, “Vehicle and Parking Space

Detection Based on Improved YOLO Network Model,” Journal

of Physics: Conference Series, vol. 1325, no. 1. IOP Publishing,

p. 012084, Oct. 01, 2019. doi: 10.1088/1742-

6596/1325/1/012084.

[6] S. A. Shakhadri. "Implementation of yolov3:

Simplified." Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2021/06/implementation

-of-yolov3-simplified/ (accessed Jun. 5, 2023).

http://www.analyticsvidhya.com/blog/2021/06/implementation
http://www.analyticsvidhya.com/blog/2021/06/implementation
http://www.analyticsvidhya.com/blog/2021/06/implementation

Appendix

#AIE604 PROJECT

import cv2

import numpy as np

from shapely.geometry import Polygon, box

total=5

CONFIDENCE = 0.1

SCORE_THRESHOLD = 0

IOU_THRESHOLD = 0.33

busy = 0

free = 0

threshold=1600

pts5 = np.array([[390, 230], [390, 290], [440, 290], [440, 230]], np.int32)

pts4 = np.array([[310, 230], [310, 290], [360, 290], [360, 230]], np.int32)

pts3 = np.array([[230, 230], [230, 290], [280, 290], [280, 230]], np.int32)

pts2 = np.array([[150, 230], [150, 290], [200, 290], [200, 230]], np.int32)

pts1 = np.array([[70, 230], [70, 290], [120, 290], [120, 230]], np.int32)

polygon1, polygon2, polygon3, polygon4, polygon5 = Polygon(pts1),

Polygon(pts2), Polygon(pts3), Polygon(pts4), Polygon(pts5)

config_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\yolov3.cfg"

weights_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\yolov3.weights"

labels =

open(r"C:\Users\falyu\PycharmProjects\pythonProject3\coco.names").read().strip

().split("\n")

net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

video_path =

r"C:\Users\falyu\PycharmProjects\pythonProject3\video_at_night.mp4"

output_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\outputVideo.mp4"

cap = cv2.VideoCapture(video_path)

#video properties

fps = cap.get(cv2.CAP_PROP_FPS)

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

fourcc = cv2.VideoWriter_fourcc(*"mp4v")

out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")

car_class_id,truck_class_id, bicycle_class_id,motorbike_class_id ,bus_class_id

=2, 7, 1 ,3, 5

while True:

ret, frame = cap.read()

if not ret:

break

h, w = frame.shape[:2]

blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True,

crop=False)

net.setInput(blob)

ln = net.getLayerNames()

try:

ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

except IndexError:

ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]

layer_outputs = net.forward(ln)

font_scale = 0.5

boxes, confidences, class_ids = [], [], []

for output in layer_outputs:

pts = pts1.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True,

(0,

255,

0),

2)

lot#1

 pts = pts2.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True,

(0,

255,

0),

2)

lot#2

 pts = pts3.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True,

(0,

255,

0),

2)

lot#3

 pts = pts4.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True,

(0,

255,

0),

2)

lot#4

 pts = pts5.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True,

(0,

255,

0),

2)

lot#5

for detection in output:

scores = detection[5:]

class_id = np.argmax(scores)

confidence = scores[class_id]

if confidence > CONFIDENCE:

box = detection[:4] * np.array([w, h, w, h])

(centerX, centerY, width, height) = box.astype("int")

x = int(centerX - (width / 2))

y = int(centerY - (height / 2))

boxes.append([x, y, int(width), int(height)])

confidences.append(float(confidence))

class_ids.append(class_id)

idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD,

IOU_THRESHOLD)

if len(idxs) > 0:

busy=0

for i in idxs.flatten():

x, y = boxes[i][0], boxes[i][1]

w, h = boxes[i][2], boxes[i][3]

if class_ids[i] == car_class_id or class_ids[i] == truck_class_id

or class_ids[i] == motorbike_class_id or class_ids[i] == bus_class_id or

class_ids[i] == bicycle_class_id:

class_id = class_ids[i]

if class_id < len(colors):

color = [int(c) for c in colors[class_id]]

scale_factor = 0.5

new_width = int(w * scale_factor)

new_x = int(x + (w - new_width) / 2)

x = new_x

w = new_width

cv2.rectangle(frame, (x, y), (x + w, y + h),

color=(0,0,245), thickness=1)

x, y, w, h = boxes[i]

POLYGON = Polygon([(x, y), (x, (y + h)), ((x + w), (y +

h)), ((x + w), y)])

lot#5

intersection = polygon5.intersection(POLYGON)

if intersection.area > threshold:

busy += 1

pts = pts5.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) #

lot#4

intersection = polygon4.intersection(POLYGON)

if intersection.area > threshold:

busy += 1

pts = pts4.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) #

lot 3

lot2

intersection = polygon3.intersection(POLYGON)

if intersection.area > threshold:

busy += 1

pts = pts3.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) #

intersection = polygon2.intersection(POLYGON)

if intersection.area > threshold:

busy += 1

pts = pts2.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) #

lot1

intersection = polygon1.intersection(POLYGON)

if intersection.area > threshold:

busy += 1

pts = pts1.reshape((-1, 1, 2))

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) #

text = "busy: {:.2f}".format(confidences[i])

cv2.putText(frame, text, (x, y - 5),

cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255),

thickness=1)

free=total-busy

cv2.putText(frame, "Free parking slots = "+str(free)+" / "+str(total),

(40, 40), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.8, color=(250, 250, 250),

thickness=2)

out.write(frame)

cv2.imshow("Frame", frame)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

out.release()

cv2.destroyAllWindows(

