
1  

Smart Parking System Based on Image Processing 

and Deep Learning 

Fatema H. Yusuf and Mohab A. Mangoud 

Department of Electrical Engineering, University of Bahrain, Kingdom of Bahrain 

Corresponding author: Fatema H. Yusuf (e-mail: 20173010@ stu.uob.edu.bh). 
 

 
Abstract 

 

This paper proposes a smart system that utilizes image 

processing and deep machine learning to address the 

parking issue for drivers. Finding an available parking slot 

has become increasingly difficult and time-consuming due 

to the growing number of vehicles, resulting in parking 

congestion. To alleviate this problem, the paper suggests 

implementing a novel camera-based system that can detect 

available parking spaces in real-time using deep machine 

learning techniques. 

The proposed system is trained on the "COCO" dataset, an 

open-source dataset containing various objects, including 

different types of vehicles, using the YOLO v3 algorithm. 

By utilizing a webcam, the system can detect vehicles 

within the parking area and accurately count the number of 

available and occupied parking slots. The webcam is 

strategically positioned at a static and elevated location to 

capture the entire parking area. An initial image of the 

parking area is captured and used as a reference to identify 

all the parking slots. 

During operation, the webcam records a real-time video of 

the parking area while the system detects vehicles within it. 

This enables the system to continuously update and provide 

an accurate count of free and occupied parking slots. The 

paper demonstrates the step-by-step implementation of the 

proposed system and presents the obtained results. 

Overall, the paper highlights the effectiveness of the 

proposed system in addressing parking issues through the 

integration of image processing, deep machine learning, and 

real-time video analysis. It also emphasizes the potential for 

further enhancements and advancements in future research. 
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1. Introduction 

 

Recently, there has been a significant increase in the number 

of vehicles, resulting in traffic congestion. One major 

contributor to traffic congestion is parking cruising. A recent 

study [1] shows that between 9% and 56% of traffic is 

caused by drivers searching for available parking spaces. 

Another study [2] conducted in New York City reveals that 

drivers spend an average of 19 minutes each day looking for 

parking spaces. This cruising for parking wastes valuable 

time, with an average of 6 minutes spent in the search. In 

addition to time wasted, this search for parking also has 

negative environmental impacts, as vehicles emit harmful 

emissions like CO2, which can adversely affect human 

health. To address this problem, an image processing-based 

smart parking system is proposed as a potential solution. This 

system aims to assist drivers in quickly locating available 

parking spaces by detecting vehicles in the parking area and 

counting the number of vacant slots. By implementing such a 

system, we can reduce traffic congestion, save time, and 

minimize fuel consumption, ultimately benefiting both 

individuals and the environment. 

One of the proposed smart parking systems [3] utilizes the 

HSV color segmentation method to obtain the background 

image of the parking area. The image undergoes 

preprocessing, including median filters and background 

detection, followed by background subtraction during the 

detection process. Various image processing techniques such 

as blurring, thresholding, and filtering are applied to enhance 

the detection performance. The system focuses on the region 

of interest (ROI) corresponding to the parking spaces to 

detect objects. By comparing the ratio of white pixels in each 

ROI to the total number of pixels with a threshold value, the 

system classifies whether the parking space is occupied or 

not. In another proposed system [4], an artificial vision 

technique is employed to extract video footage of a specific 

parking area, which is then processed using MATLAB. 

Object-Oriented Programming is used to count the available 

parking slots and determine their status. The results are 

displayed visually on a website. Additionally, a different 

proposed system [5] improves upon the YOLO v3 algorithm 

to detect vehicles and parking spaces using three datasets 

with images captured in different weather conditions. The 

YOLO v3 algorithm is enhanced by adding a residual 

structure to extract features from images containing both 

parking spaces and vehicles. Four feature maps are employed 

in the detection process, enabling complex networks to 

extract additional features. The rest of the paper is divided 

into the following sections: Section 2 will present the 

proposed smart parking system and its methodology. Section 

3 introduces the used algorithm. Results are shown in 

Section 4. Finally, Section 5, contains the conclusion and 

future work. 
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2. Proposed Smart Parking System and 

Its Methodology 

 

The figure below illustrates the block diagram of the 

system. The workflow starts with a selection process, where 

all parking slots are initially marked as free (represented by 

the color green). For the detection process, a live video 

stream of the parking area is captured using a webcam 

positioned at a high vantage point. The YOLO v3 

algorithm, previously trained on the publicly available 

"COCO" dataset containing various classes, including 

different types of vehicles, is utilized to detect vehicles in 

the parking area. Each frame of the video undergoes the 

detection process. 

 
 

 

 

 
Fig. 1. Block Diagram 

 

2.1 Threshold selection 

 

The threshold value for the area of an occupied parking slot 

is set to 1600. Additionally, initial threshold values are set 

for the confidence, score, and Intersection over Union 

(IOU). 

 

2.2 Selection of Parking Slots 

 

Instead of manually specifying the coordinates for 

irregularly shaped parking slots, rectangular regions are 

chosen as representations of the slots. These rectangles are 

selected within the slots, although they may not align 

precisely with the exact borders of the slots. The coordinates 

of these rectangles are then supplied to Python software, and 

after importing the necessary libraries, they are saved into 

variables. In the visualization, all the parking slots are 

marked in green to indicate their initial status as free slots. 

 

 
 

Fig. 2. Parking slots selection 

 

2.3 Vehicle Detection 

 

After loading the configuration and weight files of the 

pretrained YOLO v3 model, as well as the labels of the 

objects, a while loop is created to perform object detection 

on each frame of the video. A 4D blob array is generated to 

store and process the frames, which are converted into input 

images. The blob is then set as the input to the network, and 

all the layer names are retrieved. 

Next, a for loop iterates over each output layer of the 

network. The object detection is refined by focusing only on 

specific types of vehicles such as cars, buses, trucks, 

motorbikes, and bicycles, while disregarding other objects. 

Within the loop, the class IDs, scores, and confidences of the 

detected objects are extracted. Only objects with a 

confidence equal to or above the defined threshold value are 

considered. 

The bounding box coordinates, class IDs, and confidences 

are updated accordingly in case any disregarded objects are 

encountered. To avoid multiple bounding boxes around a 

single object, a non-maxima suppression technique is 

applied. Bounding box rectangles are then drawn around the 

detected vehicles labeled with the word “busy”, as illustrated 

in the provided figure. 
 

Fig. 3. Vehicles detection 
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A polygon is created for each bounding box using its 

coordinates and stored in a variable called "POLYGON". 

This polygon is then used to calculate the intersection area 

between each bounding box and each parking slot 

polygon. If the calculated area exceeds the threshold value 

for the occupied area, the slot is considered busy and 

marked in red, while also incrementing the busy counter. 

Otherwise, if the area is below the threshold, the slot's 

status remains free, which is the default. The number of 

free parking slots is determined by subtracting the number 

of busy slots from the total number of slots, which is set at 

the beginning. 

 
3. YOLO Algorithm 

 
YOLO stands for "You Only Look Once," and as the name 

suggests, this algorithm examines the input image only 

once to make predictions. It achieves this by utilizing a 

single neural network and performing a forward 

propagation pass. The network divides the input image into 

grids, with each grid representing a bounding box. The 

probabilities for each region serve as the weights for the 

bounding boxes. To prevent multiple bounding boxes from 

being drawn around the same object, a technique called 

"non-maxima suppression" is employed. YOLO consists of 

24 convolution layers and two fully connected layers, all of 

which are organized based on their specific use [6]. 

 

4. Results 

 

The proposed system was tested in The Market Mall parking 

area in Bahrain, and the results were satisfactory compared 

to other proposed systems described in [3]. However, it is 

worth noting that the compared system lacks the capability 

to detect vehicles in the parking area during nighttime. This 

limitation may be attributed to the dataset used, which does 

not include images of vehicles in various weather conditions. 

As a result, the compared system is unable to effectively 

detect vehicles at night. The figure below illustrates the test 

results of our model in a parking area with three occupied 

slots during nighttime. 

 

 

Fig. 4. Vehicles detection during nighttime 

Additionally, I tested another smart parking system that 

determines the availability of parking spaces based on the 

number of white pixels in each slot. If a parking slot contains a 

sufficient number of white pixels, it indicates that the slot is 

occupied by a vehicle. Conversely, if the number of white 

pixels is low, the slot is considered free. This system performs 

well during the daytime. However, it exhibited poor 

performance at night, as depicted in the following figure. 
 

 

Fig. 5. Fail in detecting vehicles during nighttime 

 
Another limitation of the proposed system, which relies on 

the number of white pixels, is that it may mistakenly classifya 

parking slot as occupied when people are passing through the 

area or when there is a rain spot present in the slot. This is 

because the image of the slot would have a significant 

number of white pixels, even if it does not actually contain a 

vehicle. 

 

Although the confidence values obtained by our proposed 

system are relatively low in darker conditions, as observed 

in Fig. 6, the system performs well in detecting vehicles 

during both day and night, as indicated by the following 

figures. 

 

 

Fig. 6. Parking area with three busy slots 
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Fig. 7. Parking area with one busy slot 

 
 

 
Fig. 8. Parking area with three busy slots 

 

5. Conclusion and Future Work 

 

Implementing the proposed system can pave the way for 

reducing parking cruising as the number of vehicles continues 

to increase. Drivers can benefit from the system by saving 

time, avoiding frustration while searching for parking spaces, 

and reducing fuel consumption. Additionally, the system 

contributes to protecting people from respiratory diseases by 

minimizing harmful emissions and promoting environmental 

conservation. While the proposed system successfully 

operates in different conditions and detects various types of 

vehicles, further improvements can be made. Integration of a 

user-friendly website to visualize the availability of parking 

slots and provide directions to the nearest open slot would 

enhance usability. Additionally, enhancing the system's 

confidence by incorporating more datasets with varied 

lighting conditions would be beneficial. Furthermore, 

automating the parking slot selection process would make the 

system scalable and more practical. 
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Appendix 
 

#AIE604 PROJECT 

import cv2 

import numpy as np 

from shapely.geometry import Polygon, box 

 

total=5 

CONFIDENCE = 0.1 

SCORE_THRESHOLD = 0 

IOU_THRESHOLD = 0.33 

busy = 0 

free = 0 

threshold=1600 
 

pts5 = np.array([[390, 230], [390, 290], [440, 290], [440, 230]], np.int32) 

pts4 = np.array([[310, 230], [310, 290], [360, 290], [360, 230]], np.int32) 

pts3 = np.array([[230, 230], [230, 290], [280, 290], [280, 230]], np.int32) 

pts2 = np.array([[150, 230], [150, 290], [200, 290], [200, 230]], np.int32) 

pts1 = np.array([[70, 230], [70, 290], [120, 290], [120, 230]], np.int32) 
 

polygon1, polygon2, polygon3, polygon4, polygon5 = Polygon(pts1), 

Polygon(pts2), Polygon(pts3), Polygon(pts4), Polygon(pts5) 
 

config_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\yolov3.cfg" 

weights_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\yolov3.weights" 

labels = 

open(r"C:\Users\falyu\PycharmProjects\pythonProject3\coco.names").read().strip 

().split("\n") 

 

 

net = cv2.dnn.readNetFromDarknet(config_path, weights_path) 
 

video_path = 

r"C:\Users\falyu\PycharmProjects\pythonProject3\video_at_night.mp4" 

output_path = r"C:\Users\falyu\PycharmProjects\pythonProject3\outputVideo.mp4" 

cap = cv2.VideoCapture(video_path) 
 

#video properties 

fps = cap.get(cv2.CAP_PROP_FPS) 

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 

height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 

fourcc = cv2.VideoWriter_fourcc(*"mp4v") 

out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) 
 

colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8") 

car_class_id,truck_class_id, bicycle_class_id,motorbike_class_id ,bus_class_id 

=2, 7, 1 ,3, 5 
 

while True: 

ret, frame = cap.read() 
 

if not ret: 

break 
 

h, w = frame.shape[:2] 

 

blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, 

crop=False) 

net.setInput(blob) 



 

 

ln = net.getLayerNames() 

try: 

ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] 

except IndexError: 

ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()] 
 

layer_outputs = net.forward(ln) 
 

font_scale = 0.5 

boxes, confidences, class_ids = [], [], [] 

 

for output in layer_outputs:  

 
pts = pts1.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, 

 
(0, 

 
255, 

 
0), 

 
2) 

 
# 

 
lot#1 

 pts = pts2.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, 

 

(0, 

 

255, 

 

0), 

 

2) 

 

# 

 

lot#2 

 pts = pts3.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, 

 

(0, 

 

255, 

 

0), 

 

2) 

 

# 

 

lot#3 

 pts = pts4.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, 

 

(0, 

 

255, 

 

0), 

 

2) 

 

# 

 

lot#4 

 pts = pts5.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, 

 

(0, 

 

255, 

 

0), 

 

2) 

 

# 

 

lot#5 

  

for detection in output: 

      

scores = detection[5:] 

class_id = np.argmax(scores) 

confidence = scores[class_id] 

 

if confidence > CONFIDENCE: 

box = detection[:4] * np.array([w, h, w, h]) 

(centerX, centerY, width, height) = box.astype("int") 
 

x = int(centerX - (width / 2)) 

y = int(centerY - (height / 2)) 
 

boxes.append([x, y, int(width), int(height)]) 

confidences.append(float(confidence)) 

class_ids.append(class_id) 
 

idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, 

IOU_THRESHOLD) 
 

if len(idxs) > 0: 

busy=0 

for i in idxs.flatten(): 

x, y = boxes[i][0], boxes[i][1] 

w, h = boxes[i][2], boxes[i][3] 

 

if class_ids[i] == car_class_id or class_ids[i] == truck_class_id 

or class_ids[i] == motorbike_class_id or class_ids[i] == bus_class_id or 

class_ids[i] == bicycle_class_id: 
 

class_id = class_ids[i] 

if class_id < len(colors): 

color = [int(c) for c in colors[class_id]] 
 

scale_factor = 0.5 

new_width = int(w * scale_factor) 

new_x = int(x + (w - new_width) / 2) 



 

x = new_x 

w = new_width 
 

cv2.rectangle(frame, (x, y), (x + w, y + h), 

color=(0,0,245), thickness=1) 

x, y, w, h = boxes[i] 
 

POLYGON = Polygon([(x, y), (x, (y + h)), ((x + w), (y + 

h)), ((x + w), y)]) 
 

 

 

 

 

 

lot#5 

intersection = polygon5.intersection(POLYGON) 

if intersection.area > threshold: 

busy += 1 

pts = pts5.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) # 

 

 

 

 

 

 

lot#4 

intersection = polygon4.intersection(POLYGON) 

if intersection.area > threshold: 

busy += 1 

pts = pts4.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) # 

 

 

 

 

 

 

lot 3 

 

 

 

 

 
lot2 

intersection = polygon3.intersection(POLYGON) 

if intersection.area > threshold: 

busy += 1 

pts = pts3.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) # 

 
 

intersection = polygon2.intersection(POLYGON) 

if intersection.area > threshold: 

busy += 1 

pts = pts2.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) # 

 

 

 

 

 

 

lot1 

intersection = polygon1.intersection(POLYGON) 

if intersection.area > threshold: 

busy += 1 

pts = pts1.reshape((-1, 1, 2)) 

cv2.polylines(frame, [pts], True, (0, 0, 255), 2) # 

 

text = "busy: {:.2f}".format(confidences[i]) 

cv2.putText(frame, text, (x, y - 5), 

cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(255, 255, 255), 

thickness=1) 
 

free=total-busy 

cv2.putText(frame, "Free parking slots = "+str(free)+" / "+str(total), 

(40, 40), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.8, color=(250, 250, 250), 

thickness=2) 

out.write(frame) 

 

cv2.imshow("Frame", frame) 

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 
 

cap.release() 



 

 

out.release() 

cv2.destroyAllWindows( 


