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2.4 Describing the Orbit of a Satellite

The quantity 6, in Eq. (2.15) serves to orient the ellipse with respect to the orbital plane
axes x, and y,. Now that we know that the orbit is an ellipse, we can always choose
and y, so that 6, is zero. We will assume that this has been done for the rest of this
discussion. This now gives the equation of the orbit as

_ p
1 +ecos ¢,

s 2.17)

The path of the satellite in the orbital plane is shown in Figure 2.6. The lengths a and
b of the semimajor and semiminor axes are given by

a=p/(l-¢) (2.18)
b=a(l-¢)"" (219)
The point in the orbit where the satellite is closest to the earth is called the perigee and

the point where the satellite is farthest from the earth is called the apogee. The perigee
and apogee are always exactly opposite each other. To make 6, equal to zero, we have



ORBIT CHARACTERISTICS / ECCENTRICITY

Semi-Axis Lengths of the Orbit

h2
_ P where P =—
1—e? »

See eq. (2.18)
and (2.16)

and h is the magnitude of

the angular momengum

/2 h<C

b= a(l—ez)l where € =——
2/

See eqn.
(2.19)

and e is the eccentricity of the orbit

If  a=semi-major axis,
b = semi-minor axis, and
e = eccentricity of the orbit ellipse,

then a _ b

e =

a+Db

NOTE: For acircular orbit,a=bande=0
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Figure 2.6 The orbit as it appears in the orbital plane. The point O is the center of the earth and the
point Cis the center of the ellipse. The two centers do not coincide unless the eccentricity, e, of the
ellipse is zero (i.e., the ellipse becomes a circle and a = b). The dimensions of a and b are the semimajor
and semiminor axes of the orbital ellipse, respectively.



chosen the x,, axis so that both the apogee and the perigee lie along it and the x;, axis is
therefore the major axis of the ellipse.

The differential area swept out by the vector r, from the origin to the satellite in time
dt is given by

d
dA = 057 (%) dt = 0.5hdt (2.20)

Remembering that / is the magnitude of the orbital angular momentum of the satel-
lite, the radius vector of the satellite can be seen to sweep out equal areas in equal times.
This is Kepler’s second law of planetary motion. By equating the area of the ellipse (zab)
to the area swept out in one orbital revolution, we can derive an expression for the orbital
period T as

T? = (4x%a®)/u (2.21)

This equation is the mathematical expression of Kepler’s third law of planetary
motion: the square of the period of revolution is proportional to the cube of the semi-
major axis. (Note that this is the square of Eq. (2.6) and that in Eq. (2.6) the orbit was
assumed to be circular such that semimajor axis 2 = semiminor axis b = circular orbit
radius from the center of the earth r.) Kepler’s third law extends the result from Eq.
(2.6), which was derived for a circular orbit, to the more general case of an elliptical
orbit. Equation (2.21) is extremely important in satellite communications systems. This
equation determines the period of the orbit of any satellite, and it is used in every GPS

(T =rau G (2mr ) ()2




receiver in the calculation of the positions of GPS satellites. Equation (2.21) is also used
to find the orbital radius of a GEO satellite, for which the period T must be made exactly
equal to the period of one revolution of the earth for the satellite to remain stationary
over a point on the equator,

An important point to remember is that the perlod of revolution, T, is referenced

inertial space, that is, to the galactic background. The orbital period is the time

e orbiting body takes to return to the same reference point in space with respect
to the galactic background. Nearly always, the primary body will also be rotating and
so the period of revolution of the satellite may be different from that perceived by an
observer who is standing still on the surface of the primary body. This is most obvious
with a GEO satellite (see Table 2.1). The orbital period of a GEO satellite is exactly
equal to the period of rotation of the earth, 23 hours 56 minutes 4.1 seconds, but, to an
observer on the ground, the satellite appears to have an infinite orbital period: it always
stays in the same place in the sky.




< geostationary vs. geosynchronous orbit. —

To be perfectly geostationary, the orbit of a satellite needs to have three features:

(a) it must be exactly-circular (i.e., have an eccentricity of zero);[(b)|it must be at the

correct altitude (i.e., have the correct period); and|(c)fit must be in the plane of the equa-
tor (i.e., have a zero inclination with respect to the equator)| If the inclination of the
satellite is not zero and/or if the eccentricity is not zero, but the orbital period 1s cor
rect, then the satellite will be in a geosynchronous orbit] The position of a geosynchro-
nous satellite will appear to oscillate about a mean look angle in the sky with respect
(0 a stationary observer on the earth’s surface.




Locating the Satellite in the Orbit

Consider now the problem of locating the satellite in its orbit. The equation of the orbit

may be rewritten by combining Egs. (2.15) and (2.18) to obtain

Cdl-€)
] T El:ﬂ.gd]n

Fi

(2.22)

The angle o, ¥see Figure 2.6) is measured from the x; axis and is called the trie anom-

aly. [Anomaly was a measure used by astronomers to mean a planet’s angular distance
from its perihelion (closest approach to the sun), measured as if viewed from the sun. The
term was adopted in celestial mechanics for all orbiting bodies.] Since we defined the pos-
itive x, axis so that it passes through the perigee, ¢, measures the angle from the pengee
to the instantaneous position of the satellite. The rectangular coordinates of the satellite

are given by

Xy = 74 €05 By

Yo = o $n dy

(2.23)
(2.24)



As noted earlier, the orbital period T is the time for the satellite to complete a rev-
olution in inertial space, traveling a total of 27 radians. The average angular velocity 7

15 thus

n=(2m)/T = (W")a")

(2.25)

If the orhit 1s an ellipse, the instantancous angular velocity will vary with the position of
the satellite around the orbit. If we enclose the elliptical orbit with a circumscribed cir-
cle of radius a (see Figure 2.7), then an object going around the circumscribed circle with
a constant angular velocity 7 would complete one revolution in exactly the same period

T as the satellite requires to complete one (elliptical) orbital revolution.

" Consider the geometry of the circumscribed circle as shown in Figure 2.7, Locate)
the point (indicated as A) where a vertical line drawn through the position of the satellite
intersects the circumscribed circle. A line from the center of the ellipse (C) to this point

\{A} makes an angle E with the x; axis; F is called the eccentric anomaly

of the satellite.
J
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FIGURE 2.7 The circumscribed circle and the eccentric anomaly E. Point O is the centar of
the earth and point C is both the center of the orbital ellipse and the center of the circum-
scribed circle. The satellite location in the orbital plane coordinate system is specified by (X,
vo). A wvertical line through the satellite intersects the circumscribed circle at point A. The
accentric anomaly E is the angle from the x; axis to the line joining C and A.



It is related to the radius r, by

ro = a(l — e cosE) (2.26)
Thus

a— ry = aecosk (2.27)

We can also develop an expression that relates eccentric anomaly E to the average
angular velocity %, which yields

ndt = (1 — ecosE)dE (2.28)

Let |, be the fime of perigee|This is simultaneously the time of closest approach to the
earth; the time when the satellite is crossing the x, axis; and the time when E is zero. If
we integrate both sides of Eq. (2.28), we obtain

9t —1) = E— esinE (2.29)

The left side of Eq. (2.29] is called the mean anomaly, M. Thus
M=mn(t—-1t)=E— esinE (2.30)

The mean anomaly M is the arc length (in radians) that the satellite would have traversed
since the perigee passage if it were moving on the circumscribed circle at the mean an-
gular velocity 7.

If we know the time of pengee, f,, the eccentricity, e, and the length of the semi-
major axis, a, we now have the necessary equations to determine the coordinates (ry, @)




locating the satellite af the point (xo, Yo, Zo)

and| (x;, ;) of the satellite in the orbital plane.| The process is as follows

1. Calculate n using Bg. (2.25). 7 = @7W/T = (w")/(a™)
2. Calculate M using Eq. (2.30).
3. Solve Eq. (2.30) for E.

4, Find ry from E using Eq. (227). @ — ro = aecosk

a(l — ¢
5. Solve E‘:[ (2422} for "-#[l' L 1 -I(- € cos 2;50

6. Use Eqgs. (2.23) and (2.24) to calculate x, and y,.

M=mn(t—t)=E — esinE

. X = Iy Ccos @y
Yo = Iy sin ¢y

Now we must locate the orbital plane with respect to the earth.



LOCATING THE SATELLITE IN
ORBIT SUMMARY



LOCATING THE SATELLITE IN ORBIT: 1

* Need to develop a procedure that will allow
the average angular velocity to be used

o If the orbit Is not circular, the procedure is
to use a Circumscribed Circle

A circumscribed circle Is a circle that has a
radius equal to the semi-major axis length
of the ellipse and also has the same center

15



LOCATING THE SATELLITE IN ORBIT: 2

Fig. 2.7 in the text

Yo axis

‘K: Average angular velocity
E = Eccentric Anomaly
M = Mean Anomaly

xr, axis

Circumscribed Circle

M = arc length (in radians) that
the satellite would have traversed
since perigee passage if it were
moving around the circumscribed
circlewith a mean angular velocity

n
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ORBIT DETERMINATION 3:
Procedure:

Given the time of perigee t,, the eccentricity e and
the length of the semimajor axis a:

« 7 Average Angular Velocity (eqn. 2.25)
« M Mean Anomaly (egn. 2.30)

« E Eccentric Anomaly (solve egn. 2.30)
 r, Radius from orbit center (eqn. 2.27)

* ¢, True Anomaly (solve eq. 2.22)

* X, and y, (using eqn. 2.23 and 2.24)
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