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Lecture Content 

• 2.2 Achieving a Stable Orbit

• 2.3 Kepler’s Three Laws of Planetary Motion



Chapter (2) 

- Sets out the basics of satellite orbits. 

- The factors that influence a satellite once in orbit. 

- Calculation of look angles – where to look for a 

satellite in the sky – is restricted to GEO satellites. 

• The following sections explore how earth orbit is achieved, the 

laws governing objects in orbit, satellite maneuvers, and 

determining look angles



• Stable orbit around Earth requires being beyond the bulk of Earth's atmosphere, 

commonly known as space. Different definitions of space exist; US astronauts receive 

"space wings" at altitudes exceeding 50 miles (≈80 km).

• Some international treaties designate the space frontier at a height of 100 miles (≈160 

km), requiring permission to overfly below that altitude.

• Atmospheric drag during re-entry begins around 400,000 ft (≈76 miles, ≈122 km).

• Satellites for missions lasting more than a few months are typically placed in orbits at 

least 250 miles (≈400 km) above Earth. Even at 250 miles, atmospheric drag is 

significant.

• The International Space Station (ISS) initially injected into orbit at 397 km decayed to 

360 km by the end of 1999, necessitating orbit-raising maneuvers.

• Without onboard thrusters and sufficient orbital maneuvering fuel, the ISS in a low orbit 

would not last more than a few years.

• Understanding the basic laws of celestial mechanics starts with Newtonian equations 

describing the motion of a celestial body. Coordinate axes are established to set the orbit 

of a satellite and determine various forces acting on the Earth satellite.



Understanding Equation (2.1d):
1. States that the force acting on a body equals the mass of the body multiplied by the resulting acceleration.

2. Alternatively, the resulting acceleration is the ratio of the force acting on the body to the mass of the body.

3. Indicates that, for a given force, lighter masses result in higher accelerations.

Forces Acting on a Satellite in Stable Orbit:

In a stable orbit, two main forces act on a satellite:

Centrifugal force due to the satellite's kinetic energy, attempting to move it into a higher orbit.

Centripetal force due to gravitational attraction from the planet it orbits, attempting to pull it 

toward the planet.

Conditions for Stable Orbit:

1. If centrifugal and centripetal forces are equal, the satellite remains in a stable orbit.

2. The satellite continually falls toward the planet but compensates by moving forward in its orbit.

3. Maintains the same orbital height, described as being in free fall.

Visual Representation: Figure 2.1 illustrates the two opposing forces on a satellite in a stable orbit.



Figure2.1 Forces acting on a satellite in a 
stable orbit around the earth.

Gravitational force is inversely 
proportional to the square of the distance 
between the centers of gravity of the 
satellite and the planet the satellite is 
orbiting, in this case the earth. The 
gravitational force inward (FIN, the 
centripetal force) is directed toward the 
center of gravity of the earth. 

The kinetic energy of the satellite (FOUT, the 
centrifugal force) is directed diametrically 
opposite the gravitational force. Kinetic 
energy is proportional to the square of 
the velocity v of the satellite.

 
When these inward and outward forces 
are balanced, the satellite moves around 
the earth in a free fall trajectory: the 
satellite’s orbit. For a description of the 
units, please see the text. 







If the orbit is circular, the distance traveled by a satellite in one orbit around a planet is 2πr, where r is 

the radius of the orbit from the satellite to the center of the planet. Since distance divided by velocity 

equals time to travel that distance, the period of the satellite’s orbit, T, will be 



Note the reduction in orbital period as the satellites move from GEO (essentially zero movement as observed from 

the ground) to very low earth orbit (VLEO). There are two immediate consequences for non-geostationary satellites 

as far as connections to a fixed earth station on the surface of the earth: (i) there will be gaps in coverage unless a 

con- stellation of the same satellites are orbiting, usually in the same plane; (ii) the observation time is significantly 

reduced as the orbital altitude is reduced. What is gained in lower signal delay with altitude is lost with the need for 

complex fixed earth station antennas and smaller observation time per satellite. 

Table 2.1 gives the velocity, v, and orbital period, T, for four satellite systems that occupy typical low earth 

orbit (LEO), medium earth orbit (MEO), and geostationary earth orbit (GEO) orbits around the earth. In each 

case, the orbits are circular and the average radius of the earth is taken as 6378.137 km (Gordon and Morgan 

1993). 



Example 2.1

Question: A satellite is in a 322 km high circular orbit. Determine: 

a. The orbital angular velocity in radians per second; 

b. The orbital period in minutes; and

c. The orbital velocity in meters per second. 

Note: Assume the average radius of the earth is 6378.137 km and Kepler’s constant has the 

value 3.986 004 418 × 105 km3/s2. 
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Figure2.2 The initial coordinate 

system used to describe the 

relationship between the earth and 

a satellite. 

A Cartesian coordinate system 

with the geographical axes of the 

earth as the principal axes is the 

simplest coordinate system and the 

origin at the center of the earth. 

The rotational axis of the earth is 

about the z axis, which passes 

through the geographic north pole. 

The x and y axes are mutually 

orthogonal to the z axis and lie in 

the earth’s equatorial plane. 

The vector r locates the satellite 

with respect to the center of the 

earth. 





Figure2.3 The orbital plane 

coordinate system. 

In this coordinate system the 

orbital plane is used as the 

reference plane.

The orthogonal axes x0 and y0 

lie in the orbital plane. 

The third axis, z0 is 

orthogonal to the x0 and y0 

axes to form a right hand 

coordinate set. 

The z0 axis is not coincident 

with the earth’s z axis through 

the earth’s north pole unless 

the orbital plane lies exactly in 

the earth’s equatorial plane. 













Kepler’s 1st Law:  Law of Ellipses

The orbits of the planets are ellipses with 

the sun at one focus



Kepler’s 2nd Law:  Law of Equal Areas

The line joining the planet to the center of the sun 

sweeps out equal areas in equal times
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Kepler’s 2nd Law:  Law of Equal Areas

t0

t3

t1

t2

Area 1Area 2

t1-t0 = t3-t2

Area 1 = Area 2

Satellite travels at varying speeds



Kepler’s 3rd Law:  Law of Harmonics

The squares of the periods of 

two planets’ orbits are 

proportional to each other as 

the cubes of their semi-

major axes:

T1
2/T2

2 = a1
3/a2

3

“Orbits with the same semi-

major axis will have the 

same period”
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