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Chapter (2)

- Sets out the basics of satellite orbits.
- The factors that influence a satellite once In orbit.

- Calculation of look angles — where to look for a
satellite In the sky — Is restricted to GEO satellites.

« The following sections explore how earth orbit is achieved, the
laws governing objects in orbit, satellite maneuvers, and
determining look angles




Stable orbit around Earth requires being beyond the bulk of Earth's atmosphere,
commonly known as space. Different definitions of space exist; US astronauts receive
"space wings" at altitudes exceeding 50 miles (=80 km).

Some international treaties designate the space frontier at a height of 100 miles (=160
km), requiring permission to overfly below that altitude.

Atmospheric drag during re-entry begins around 400,000 ft (=76 miles, ~122 km).

Satellites for missions lasting more than a few months are typically placed in orbits at
least 250 miles (=400 km) above Earth. Even at 250 miles, atmospheric drag is
significant.

The International Space Station (ISS) initially injected into orbit at 397 km decayed to
360 km by the end of 1999, necessitating orbit-raising maneuvers.

Without onboard thrusters and sufficient orbital maneuvering fuel, the ISS in a low orbit
would not last more than a few years.

Understanding the basic laws of celestial mechanics starts with Newtonian equations
describing the motion of a celestial body. Coordinate axes are established to set the orbit
of a satellite and determine various forces acting on the Earth satellite.



Newton’s laws of motion can be encapsulated into four equations:

* Distance traveled at time £ (s).

— 2
s=ut+(1/2)at (2.1a) * Initial velocity at t = O (w).
v = u? + 2at (2.1b) * Final velocity at time ¢ (v).
v=u++ at (2.1(:) * Acceleration of the object (a).
P = ma (2.1{:1) * Force acting on the object (P).

Mass of the object ().

Understanding Equation (2.1d):

1. States that the force acting on a body equals the mass of the body multiplied by the resulting acceleration.
2. Alternatively, the resulting acceleration is the ratio of the force acting on the body to the mass of the body.
3. Indicates that, for a given force, lighter masses result in higher accelerations.

Forces Acting on a Satellite in Stable Orbit:
In a stable orbit, two main forces act on a satellite:
Centrifugal force due to the satellite's kinetic energy, attempting to move it into a higher orhbit.
Centripetal force due to gravitational attraction from the planet it orbits, attempting to pull it
toward the planet.

Conditions for Stable Orbit:
1. If centrifugal and centripetal forces are equal, the satellite remains in a stable orbit.
2. The satellite continually falls toward the planet but compensates by moving forward in its orbit.
3. Maintains the same orbital height, described as being in free fall.

Visual Representation: Figure 2.1 illustrates the two opposing forces on a satellite in a stable orbit.
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Figure2.1 Forces acting on a satellite in a
stable orbit around the earth.

Gravitational force is inversely
proportional to the square of the distance
between the centers of gravity of the
satellite and the planet the satellite is
orbiting, in this case the earth. The
gravitational force inward (F.,, the
centripetal force) is directed toward the
center of gravity of the earth.

The kinetic energy of the satellite (F.., the
centrifugal force) is directed diametrically
opposite the gravitational force. Kinetic
energy is proportional to the square of
the velocity v of the satellite.

When these inward and outward forces
are balanced, the satellite moves around
the earth in a free fall trajectory: the
satellite’s orbit. For a description of the
units, please see the text.



Definition of Force:
* Force (F) is calculated as the product of mass (m) and acceleration (a): F' =
m X a.
* The unit of force is the Newton (V).
Newton as a Unit of Force:
* One Newton (V) is defined as the force required to accelerate a mass of 1 kg with
an acceleration of 1m/s2.
* The underlying units of a Newton are (kg) x (m/s”).
Imperial Units Conversion:
* |In Imperial Units, one Newton is equivalent to 0.2248 foot-pounds (ft. 1b.).
Standard Acceleration due to Gravity:
* The standard acceleration due to gravity at Earth's surface is approximately
9.80665 x 10~ km/s2.
* This value is often quoted as 981 cm/sz.
Note on Gravity:
* The provided information suggests that the acceleration due to gravity decreases

with altitude or distance from the Earth's surface.



height above the earth’s surface. The acceleration, a, due to gravity at a distance r from
the center of the earth is (Gordon and Morgan 1993)

a = u/r* km/s* (2.1e)

where the constant y is the product of the universal gravitational constant G and the
mass of the earth M.

The product [GM; 1is called Kepler's constant| and has the value
3.986 004 418 x 10° km?/s”.

The universal gravitational constant is

G = 6.672 x 10~ Nm? /kg? or 6.672 x 10720 km® /kg s>

in the older units. Since Force = mass X acceleration, the centripetal force acting on the
satellite, Fyy;, is given by
=mx (GMg/r?*) (2.2b)

In a similar fashion, the centrifugal acceleration is given by
a=V*/r) (2.3)
which will give the centrifugal force, Fy;T, as

Four =mX (V*/r) (2.4)

If the forces on the satellite are balanced, Fj\; = Fo;y1 and, using Eqgs. (2.2a) and (2.4),

mxXufrt=mxv?/[r

hence the velocity v ot a satellite in a circular orbit is given by

y=(k /r)1/2 (2.5)




If the orbit is circular, the distance traveled by a satellite in one orbit around a planet is 2zr, where r is
the radius of the orbit from the satellite to the center of the planet. Since distance divided by velocity
equals time to travel that distance, the period of the satellite’s orbit, T, will be

Since distance divided by velocity equals time to travel that distance, the period of the
satellite’s orbit, T, will be

T = Qxr)/v= 2zr)/[(u/r)*]
giving

T = (2zr*/?) /(u'/?) (2.6)




Table 2.1 Orbital velocity, height, and period for five satellite systems

Orbital period

Satellite system Orbital height (km) Orbital velocity (km/s) (h) (min) (s)
Intelsat (GEO) 35786.03 3.0747 23 56 4.08
Other 3 billion (O3B) (MEO) 8 062 5.2539 4 47 0.01
Globalstar (LEO) 1414 7.1522 1 54 5.35
Iridium (LEO) 780 7.4624 1 40 27.0
SpaceX (VLEO) 345.6 7.69951 1 31 26.90

Table 2.1 gives the velocity, v, and orbital period, T, for four satellite systems that occupy typical low earth
orbit (LEO), medium earth orbit (MEO), and geostationary earth orbit (GEO) orbits around the earth. In each
case, the orbits are circular and the average radius of the earth is taken as 6378.137 km (Gordon and Morgan
1993).

Note the reduction in orbital period as the satellites move from GEO (essentially zero movement as observed from
the ground) to very low earth orbit (VLEO). There are two immediate consequences for non-geostationary satellites
as far as connections to a fixed earth station on the surface of the earth: (i) there will be gaps in coverage unless a
con- stellation of the same satellites are orbiting, usually in the same plane; (ii) the observation time is significantly
reduced as the orbital altitude is reduced. What is gained in lower signal delay with altitude is lost with the need for
complex fixed earth station antennas and smaller observation time per satellite.



Example 2.1

Question: A satellite is in a 322 km high circular orbit. Determine:
a. The orbital angular velocity in radians per second;

b. The orbital period in minutes; and

c. The orbital velocity in meters per second.

Note: Assume the average radius of the earth is 6378.137 km and Kepler’s constant has the
value 3.986 004 418 x 105 km3/s2.



Example 2.1

Question: A satellite is in a 322 km high circular orbit. Determine:

a. The orbital angular velocity in radians per second;

b. The orbital period in minutes; and

c. The orbital velocity in meters per second.

Note: Assume the average radius of the earth is 6378.137 km and Kepler’s constant has the
value 3.986 004 418 x 105 km3/s2.

Answer
It is actually easier to answer the three parts of this question backward, beginning with
the orbital velocity, then calculating the period, and hence the orbital angular velocity.
First we will find the total radius of the orbit r = 322 + 6378.137 km = 6700.137 km

(c) From Eq. (2.5), the orbital velocity v = (u/r)"'* = (3.986 004418 x 10°/6700.137)"/~
=7.713066 km/s = 7713.066 m/s.

(b) From Eq. (2.6), [[ = (22r*'2)/(u"?)|= (226700.1373/2)/(3.986 004418 x 10°)1/2 =
(3445921.604)/(631.3481146) = 5458.037372seconds = 90.967 2895 minutes =
90.97 minutes.

(a) The orbital period from above is 5458.037 372 seconds. One revolution of the
earth covers 360° or 2xr radians. Hence 2x radians are covered in 5458.037 372 seconds,
giving the orbital angular velocity as|2n/5458.037 372rad/s = 0.001 1512 rad/s{ An
alternative calculation procedure would calculate the distance traveled in one orbit
(2nr = 276700.137 = 42 098.202 36 km). This distance is equivalent to 2x radians and
so 1 km is equivalent to 2x/42 098.202 36 rad = 0.000 149 3 rad. From above, the orbital
velocity was 7.713 066 km/s = 7.713 066 X 0.000 149 3 rad/s = 0.001 1512 rad/s.




A number of coordinate systems and reference planes can be used to describe the
orbit of a satellite around a planet. Figure 2.2 illustrates one of these using a Carte-
sian coordinate system with the earth at the center and the reference planes coincid-
ing with the equator and the polar axis. This is referred to as a geocentric coordinate
system.

With the coordinate system set up as in Figure 2.2, and with the satellite mass m
located at a vector distance r from the center of the earth, the gravitational force F on
the satellite is given by

GMEMF

F=- 3

(2.7)

where My is the mass of the earth and G = 6.672x107! Nm?/kg®. But
force = mass X acceleration and Eq. (2.7) can be written as

_ 27
o m% 2.8)




Figure2.2 The initial coordinate
system used to describe the
relationship between the earth and
a satellite.

A Cartesian coordinate system
with the geographical axes of the
earth as the principal axes is the
simplest coordinate system and the
origin at the center of the earth.

The rotational axis of the earth is
about the z axis, which passes
through the geographic north pole.

The x and y axes are mutually
orthogonal to the z axis and lie in
the earth’s equatorial plane.

The vector r locates the satellite
with respect to the center of the
earth.



From Egs. (2.7) and (2.8) we have

r
_r, _ar 2.9
= (2.9)
which yields
&7
s ’;y 0 (2.10)

Thisis asecond order linear differential equation and its solution will involve six unde-
termined constants called |Ehe orbital elements. |The orbit described by these orbital ele-
ments can be shown to lie in a plane and to have a constant angular momentum. The
solution to Eq. (2.10) is difficult since the second derivative of r involves the second
derivative of the unit vector r. To remove this dependence, a different set of coordinates
can be chosen to describe the location of the satellite such that the unit vectors in the

three axes are constant. This coordinate system uses the plane of the satellite’s orbit as
the reference plane. This is shown in Figure 2.3.
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Figure2.3 The orbital plane
coordinate system.

In this coordinate system the
orbital plane is used as the
reference plane.

The orthogonal axes x0 and y0
lie in the orbital plane.

The third axis, z0 is
orthogonal to the x0 and y0
axes to form a right hand
coordinate set.

The z0 axis is not coincident
with the earth’s z axis through
the earth’s north pole unless
the orbital plane lies exactly in
the earth’s equatorial plane.



Expressing Eq. (2.10) in terms of the new coordinate axes #, 7, and z, gives

2 A A
N (d xo) " (dﬂyo) . (%3 +y§/yzo) L, 211
ar ac ) (R +92)

Equation (2.11) is easier to solve if it is expressed in a polar coordinate system rather
than a Cartesian coordinate system. The polar coordinate system is shown in Figure 2.4.
With the polar coordinate system shown in Figure 2.4 and using the transformations

X = 'y COS ¢, (2.12a)
Yo = I Sin ¢y (2.12b)
Ry = Py cos ¢y — @, sin ¢, (2.12¢)
9o = By cos dy + 7y sin ¢, (2.12d)
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Figure 2.4 Polar coordinate system in the plane of
the satellite’s orbit. The axis z, is straight out of the
paper from the center of the earth, and is normal to
the plane of the satellite’s orbit. The satellite’s
position is described in terms of the distance r, from
the center of the earth and the angle this makes
with the x, axis, ¢,.



and equating the vector components of r, and ¢, in turn in Eq. (2.11) yields

d’r, de, B
(&)=

2
ro (ddf;“) +2 (%) (%) =0 (2.14)

Using standard mathematical procedures, we can develop an equation for the radius
of the satellite’s orbit, r;, namely

_ p
0T T e cos(¢g — 6p)

(2.13)

o=

and

(2.15)

where 6, is a constant and e is the eccentricity of an ellipse whose semilatus rectum p is
given by

(2.16)

and / is the magnitude of the orbital angular momentum of the satellite. That the equa-
tion of the orbit is an ellipse is Kepler's first law of planetary motion.



2.3 Kepler's Three Laws of Planetary Motion

Johannes Kepler (1571-1630) was a German astronomer and scientist who developed
his three laws of planetary motion by careful observations of the behavior of the planets
in the solar system over many years, with help from some detailed planetary observa-
tions by the Hungarian astronomer Tycho Brahe. Kepler’s three laws are:

1. The orbit of any smaller body about a larger body is always an ellipse, with the center
of mass of the larger body as one of the two foci.

2. The orbit of the smaller body sweeps out equal areas in equal time (see Figure 2.5).

3. The square of the period of revolution of the smaller body about the larger body
equals a constant multiplied by the third power of the semimajor axis of the orbital
ellipse. That is T = (47°a°)/u where T'is the orbital period, 4 is the semimajor axis of
the orbital ellipse, and y is Kepler's constant. If the orbit is circular, then a4 becomes
distance r, defined as before, and we have Eq. (2.6).




Figure 2.5 lllustration of Kepler's second law of planetary motion. A satellite is in orbit around the
planet earth, E. The orbit is an ellipse with a relatively high eccentricity, that is, it is far from being
circular. The figure shows two shaded portions of the elliptical plane in which the orbit moves, one is
close to the earth and encloses the perigee while the other is far from the earth and encloses the
apogee. The perigee is the point of closest approach to the earth while the apogee is the point in the
orbit that is furthest from the earth. While close to perigee, the satellite moves in the orbit between t,
and t, and sweeps out an area denoted by A,,. While close to apogee, the satellite moves in the orbit
between times t, and t, and sweeps out an area denoted by A,,. If t, -t, =t; - t, then A,, = A;,.



Kepler’s Ist Law: Law of Ellipses

The orbits of the planets are ellipses with
the sun at one focus



Kepler’s 2nd Law: Law of Equal Areas

The line joining the planet to the center of the sun
sweeps out equal areas in equal times

T5 4 13

T6



Kepler’s 2nd Law: Law of Equal Areas

t1-lo = -k
Area 1 = Area 2
Satellite travels at varying speeds



Kepler’s 3rd Law: Law of Harmonics

The squares of the periods of
two planets’ orbits are
proportional to each other as
the cubes of their semi-
major axes:
T12/T22 = a13/az3

“Orbits with the same semi-
major axis will have the
same period”




Example 2.2

Question: A satellite in an elliptical orbit around the earth has an apogee of 39 152 km
and a perigee of 500 km. What is the orbital period of this satellite? Give your answer in
hours. Note: Assume the average radius of the earth is 6378.137 km and Kepler’s con-

stant has the value 3.986 004 418 x 10° km?3/s2.



Example 2.2

Question: A satellite in an elliptical orbit around the earth has an apogee of 39 152 km
and a perigee of 500 km. What is the orbital period of this satellite? Give your answer in
hours. Note: Assume the average radius of the earth is 6378.137 km and Kepler’s con-
stant has the value 3.986 004 418 x 10° km3/s2.

Answer
The mathematical formulation of the third law is 7% = (4#*a°)/p, where T is the orbital
period, a is the semimajor axis of the orbital ellipse, and y is Kepler’s constant.

The perigee of a satellite is the closest distance in the orbit to the earth; the apogee of
a satellite is the furthest distance in the orbit from the earth.

For the last part, draw a diagram to illustrate the geometry.

The semimajor axis of the ellipse = (39 152 + (2 X 6378.137) + 500)/2 = 26 204.137 km

The orbital period is
T? = (4n°a%)/ u = (47*(26204.137)%)/3.986 004418 X 10° = 1782 097 845.0 s>



Elliptical

Earth radius r,

6378 km
Apogee Distance

35,162 km

Perigee

Perigee Distance

Figure Ex 2.2 The elliptical orbit of the satellite in Example 2.2. This is a Molniya orbit.

Therefore, T = 42214.900 75 seconds = 11.726 361 32 hours = (11 hours 43 minutes
34.9 seconds)

What we have found above is the orbital period of a Molniya satellite of the former
Soviet Union as shown in Figure Ex 2.2. Describing the orbit of a satellite enables us to
develop Kepler’s second two laws.
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