
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2023 IEEE

SmartGuard: Advanced Motion Detection and
Streaming with Raspberry Pi and AWS

Ammar Isa

Department of Electrical and Electronics Engineering
University of Bahrain

 Mohab Mangoud
Department of Electrical and Electronics Engineering

University of Bahrain

Abstract— This project presents an innovative approach in
the realm of security systems, using the capabilities of the
Internet of Things (IoT) to enhance surveillance and safety
measures. This report details the development and
implementation of a sophisticated motion detection and
streaming system using a Raspberry Pi 4 and web cameras,
integrated seamlessly with Amazon Web Services (AWS) for
cloud-based data handling and storage. The project aimed to
create an advanced IoT-based security system capable of real-
time motion detection, video streaming, and remote system
management. By using technologies such as MQTT for device
communication and incorporating a user-friendly HTML-based
dashboard, the project provides efficient, real-time surveillance
capabilities. Our findings indicate that the integration of IoT
devices with cloud computing platforms significantly enhances
the effectiveness and responsiveness of security systems. The
project successfully overcame challenges related to hardware
integration, streaming latency, and motion detection accuracy,
demonstrating the feasibility and reliability of IoT in security
applications. Through this project, we showcase the
transformative power of IoT in revolutionizing traditional
security systems, offering valuable insights and a strong
foundation for future innovations in IoT-based security
solutions.

Keywords—IoT, Motion Detection, MQTT, AWS, PuTTY,
RealVNC, Video Streaming, Video, Raspberry Pi, Security
Systems, Security, HLS

I. INTRODUCTION
The objective of this project is to build a security camera

with motion detection system using Raspberry Pi. In
additional this project solves the needs of physical connection
during the maintenances for the raspberry pi using VNC
Cloud to control the raspberry pi. The use of advanced
technology has become essential in the context of modern
security systems in order to meet current security issues.
Using the flexibility and power of the Raspberry Pi, this
project seeks to innovate in this field by creating a smart
security camera system with motion detection. The major
goals are to improve the system's maintenance and
accessibility features in addition to developing a dependable
security apparatus. One of the notable challenges in
conventional security systems is the dependency on physical
connections for maintenance and monitoring. Addressing this,
the project introduces the use of VNC Cloud, facilitating
remote control and maintenance of the Raspberry Pi, thereby
significantly reducing the need for physical interaction. This
advancement not only streamlines the maintenance process
but also adds a layer of flexibility in system management. The
primary objective of this project is to create an HTML-based
dashboard that is easy to use. Serving as the hub of the whole
operation, this website offers users a thorough and user-
friendly interface. Several features are integrated into the
dashboard, such as a live feed from the security camera that

uses High-Level broadcast (HLS) technology to broadcast
smoothly. This feature is accomplished by establishing a
direct connection with the AWS infrastructure and using
Kinesis Video Streams to provide a steady and excellent video
stream. Furthermore, the project harnesses the power of
MQTT protocol, with Raspberry Pi serving as the publisher.
This setup enables an efficient history of motion detection
records, connecting the Raspberry Pi with the AWS platform,
which acts as the broker. The website, being the subscriber in
this arrangement, presents these records in an organized and
accessible manner, allowing users to review and analyze
security data effectively. This project seeks to transform not
only the way security camera systems are maintained and
used, but also the way they are designed with sophisticated
motion detection. The project promises increased efficiency,
flexibility, and user-friendliness in the realm of security
systems by integrating technologies like Raspberry Pi, VNC
Cloud, HTTP, AWS, and MQTT.

II. PAPER STRUCTURE
The report commences with a comprehensive literature

review (Section III), delving into prior research and
developments in IoT security systems, motion detection
technologies, and the role of cloud computing within the IoT
paradigm. This is followed by an in-depth exploration of
system design and architecture (Section IV), discussing the
required hardware, software, and protocols used in the project.
The implementation section (Section V) delves deeply into the
technical aspects, detailing the setup of the Raspberry Pi OS,
along with the configuration of PuTTY and RealVNC
software, and their integration into the project. This section
also covers motion detection and the detailed use of AWS
Services. Next, the report presents the results and discussion
(Section VI), detailing the project's successes and addressing
challenges encountered during its implementation. This
section assesses the outcomes, focusing on how various
challenges were effectively resolved. Finally, the conclusion
(Section VII) summarizes the report and discusses potential
avenues for future development, reflecting on the project's
implications and future prospects in the field of IoT security.

III. LITERATURE REVIEW
Investigating different paper is crucial part specially in

fields like the developments in IoT security systems, motion
detection technologies, and the role of cloud computing within
the IoT paradigm. One of the papers that investigates facial
recognition-based door access control system as part of a
home security solution and the system is built using a
Raspberry Pi, integrating IoT for remote control and
communication. the core feature for identifying individuals
for door access. The paper discusses various methods and
technologies for effective facial recognition. IoT is used to
enhance the system’s functionality, allowing remote
monitoring and control, which is facilitated through a

smartphone application. the study shows Raspberry Pi for
processing, control and optimizing Raspberry Pi performance
for image processing which is valuable for motion detection
functionality. In addition, techniques such as CNNs used in
the paper for facial recognition, could potentially be adapted
for more sophisticated motion detection or for adding
additional features like object or person recognition to this
project [1]. Also, a multifaceted home security system
employing IoT technologies and a diverse array of sensors,
including gas, humidity, temperature, and motion detectors, is
thoroughly explored. Significantly, the paper's deployment of
microcontrollers like Arduino and Raspberry Pi for sensor
data processing parallels the technological approach of your
project, which utilizes Raspberry Pi for motion detection and
video streaming. The study's emphasis on real-time data
processing and IoT-based monitoring and control systems,
including the development of a user-centric Android
application, aligns closely with your project's use of a web-
based dashboard for interactive control and monitoring.
Furthermore, the paper's discussion of challenges and future
IoT trends provides valuable insights for enhancing system
reliability and data accuracy, offering a comprehensive
perspective that can inform and potentially guide the
development and refinement of this IoT-based motion
detection system project [2], [3]. Moreover, a paper that
provides a comprehensive analysis of a fall detection system,
utilizing RGB cameras and IoT technologies in intricate home
settings, focusing particularly on aiding the elderly. This study
is notably aligned with your project in its application of
camera-based monitoring, combining hardware like
Raspberry Pi with sophisticated software for real-time data
analysis. The paper's methodology, involving the integration
of IoT devices with advanced algorithms for accurate and
responsive monitoring, parallels to this project use of web
cameras for motion detection. It underscores the significance
of real-time processing and the precision of algorithms in IoT
systems. Where, the challenges addressed such as accuracy in
diverse environments, and the exploration of future
improvements like enhanced image processing and AI
integration that offer valuable insights. These insights are
particularly pertinent for optimizing is project motion
detection capabilities and guiding its future development in
IoT-based security systems [4]. In addition, a paper introduces
a novel approach to detect small, fast-moving insects using
advanced object detection methods, incorporating motion-
informed enhancement (MIE) and deep learning models like
YOLO and Faster R-CNN. This methodology, focusing on
real-time analysis and image preprocessing in complex
environments, aligns closely with the objectives of this IoT
project that involves real-time motion detection and video
streaming. The integration of Raspberry Pi with sophisticated
image processing algorithms as explored in the paper,
parallels this project utilization of similar technology for video
data analysis. Crucially, the paper’s strategies for enhancing
detection accuracy in variable conditions and its insights into
deep learning applications provide valuable guidance for this
project. These methodologies could significantly refine the
motion detection capabilities of this IoT-based security
system, particularly in complex and dynamic environmental
settings, paving the way for future advancements in IoT and
camera-based monitoring systems [5]. A notable omission in
the papers the lack of discussion on the maintenance and
updating of IoT systems, particularly in hard-to-reach areas.
These studies, while comprehensive in their technical
approach, do not delve into the practical aspects of sustaining

and upgrading these systems post-deployment, which is
critical for long-term functionality and reliability. In this IoT
project it has been implemented a strategy for remote
maintenance and updates. This approach is crucial for systems
deployed in areas where physical access is challenging or
limited. With leveraging cloud services, SSH protocols, and
other remote access tools where system allows for the
updating of software, troubleshooting, and performance
tuning from a distance. This capability significantly reduces
the need for physical intervention. Moreover, by facilitating
remote maintenance that ensures higher system uptime and
reliability as issues can be addressed promptly without the
need for on-site visits. This project creates a system with an
ability to receive updates remotely means it can adapt to
evolving environmental conditions, security threats, or
technological advancements, maintaining its effectiveness
over time. In addition, this project not only advances the
technological aspects discussed in the papers but also
contributes to the practical application of IoT systems. It
provides a blueprint for how maintenance and updates can be
efficiently managed in IoT deployments particularly in
scenarios where accessibility is a concern. The inclusion of
remote maintenance and update capabilities in this project
addresses a critical gap in the existing literature, highlighting
the importance of not just developing IoT solutions but also
ensuring their long-term sustainability. This aspect of the
project not only enhances its practicality but also serves as a
valuable reference point for future IoT developments,
especially in the context of security systems in challenging
environments.

IV. SYSTEM DESIGN AND ARCHITECTURE
This project harnessed the compact power of the

Raspberry Pi 4 as the core computing device, complemented
by web camera for real-time visual monitoring. The software
stack was built primarily using Python with OpenCV library
for its proven capabilities in image processing and motion
detection algorithm. Where, integration with AWS platform
played a pivotal role in this project, enabling sophisticated
data handling, stream capabilities, and remote system
management. This section contains a detailed description of
the system architecture, including the hardware part like
Raspberry Pi 4 with the web camera, and the required software
like AWS platform, PuTTY, and RealVNC. It provides an
overview about the use of Hypertext Transfer Protocol
(HTTP). Additional to the use of the HTTP Live Streaming
(HLS) protocol for efficient video streaming and Massage
Queuing Telemetry Transport (MQTT) protocol for reliable
message queuing and delivery is elaborated upon highlighting
their significance in the project. Moreover, the
implementation of secure communication protocols such as
Secure Socket Shell (SSH), and Remote Framebuffer (RFB)
are discussed to ensure the system’s integrity and security.
That will give the read clear overview of the requirements to
create the project from the beginning.

A. Hardware
The main hardware requirement in this project are

computer, Raspberry Pi 4, and web camera to achieve a
successful result. First, computer is essential to control the
Raspberry Pi 4 and to impellent the necessary codes to apply
the motion detection, etc. Also, computer will be used to fill a
gap in the previous literate reviews. The Raspberry Pi 4 is a
significant upgrade in Raspberry Pi series that offering
enhanced performance and flexibility. As a compact, cost-

effective which is powerful single-board computer. Figure.1
show the structure of Raspberry Pi 4.

The Raspberry Pi 4 is powerful due to its comprehensive
specification, which is equipped with a Broadcom BCM2711,
Quad-core Cortex-A72 (ARM v8) 64bit SoC, operating at
1.5GHz that provides substantial computational power. It
comes in different RAM configurations – 2GB, 4GB, or 8GB,
allowing for versatile application based on project
requirements. Also, it includes a Gigabit Ethernet port, dual-
band 2.4/5.0 GHz wireless Lan, Bluetooth 5.0, and BLE for
various connectivity options. The 40-Pin GPIO header is fully
backward compatible with the previous boards, offering wide
ranging interfacing capabilities. In addition, it features two
USB 3.0 ports and two USB 2.0 ports, enabling the connection
of multiple peripherals. The board supports two micro-HDMI
ports, supporting up to 4K resolution, and 4-pole stereo audio
and composite video port. For the storage, it uses a microSD
card slot for loading the operating system and data storage,
which is flexible and convenient [6] . Picking the Raspberry
Pi 4 as the main embedded system for different reasons such
as, the computational capability where the quad-core
processor and the option for up to 8GB RAM make it an ideal
choice for handling the computational demands of motion
detection algorithms and video processing tasks. Also, its
wide range of connectivity features including wireless LAN
and Bluetooth are essential for projects that require remote
communication and data transmission. Moreover, the support
for high-definition video and compatibility with camera
modules make it particularly suited for a project that revolves
around video capture and streaming. In addition, its small
form device and it require low energy consumption which is
crucial for surveillance system intended to run continuously.
Considering its performance capabilities, the raspberry pi 4
offers an economical solution keeping the project cost
effective without compromising functionality.

Webcam is essential part of this project where the primary
role of it is to continuously monitor the environment to detect
motion. Its capability ensures that even subtle movements are
captured, which is crucial for the effectiveness of motion
detection algorithm. Also, it capturing the real-time video
stream. Moreover, once the motion detected, the camera
records the video feed, and store it. The webcam also serves
as a data acquisition tool. The images and videos captured by
the camera are essential inputs for the analysis algorithms
running on the Raspberry Pi. In the broader scope of the
project, the camera acts as a surveillance device, contributing

to the security aspect by providing visual monitoring of the
targeted area. Figure.2 shows an example of Webcam.

The integration of the Raspberry Pi 4 and a high-definition
web camera forms an effective core for this IoT-based motion
detection project. The Raspberry Pi 4, with its robust
processing power, versatile memory options, and extensive
connectivity, is ideally suited for handling complex motion
detection algorithms and video processing tasks. Its compact
size and energy efficiency make it particularly fitting for
continuous surveillance systems, offering a cost-effective yet
powerful solution. The web camera, pivotal in continuously
monitoring and recording motion, enhances the system's
effectiveness with its high-quality video capture and crucial
role in data acquisition for analysis. Together, these
components create a sophisticated, reliable, and economical
security system, demonstrating the potential of combining
cutting-edge technology in IoT applications.

B. Software & protocols
Different types of software used to achieve a successful

result. Python is chosen as primary programming language for
this IoT motion detection project duo to ease of use where its
renowned for its readability and simplicity that making it
accessible for achieve the desired results in this project. Also,
Python boasts a vast and active community that provides an
abundance of recourses and support, which is invaluable for
troubleshooting and enhancing project capability. Moreover,
its seamlessly integrates with various hardware and software
platforms, including Raspberry Pi and web cameras which
allowing it for smooth development process. Python is very
efficient when it comes for image processing and computer
vision while it provides powerful libraries such as what used
in this project OpenCV that make an optimal choice for
motion detection. OpenCV offers efficient algorithm
detecting motion. In this project, frame differencing
techniques, where consecutive video frames are compared to
identify differences caused by motion were primarily used.
Also, it provides tools for image manipulation and processing,
where are crucial for preparing frames for analysis and
enhancing the accuracy of motion detection. OpenCV’s
compatibility with Python and its ability to run on various
platforms, including the Raspberry Pi, makes it an ideal choice
for this project.

 RealVNC (Virtual Network Computing), it is a remote
access software that allows users to control and interact with
computers remotely over network. It utilizes the Remote
Framebuffer (RFB) protocol to transmit the keyboard and
mouse input from one computer which is the client to another
which is the server, and relay the graphical screen updates

Fig. 2. Example of Webcam

Fig. 1. Raspberry Pi 4 Structure

back to the client [7]. This technology is particularly
beneficial for managing devices like Raspberry Pi in remote
or inaccessible locations. RealVNC is used to remotely access
and control the Raspberry Pi’s desktop environment over the
internet. This is useful for managing the Raspberry Pi settings,
software, and files from a remote location. The Raspberry Pi
acts as a VNC server and any device with a VNC client
connect to it. While, the server software runs on the Raspberry
Pi, enabling it to share its screen while the client software runs
on another device, allowing it to control the Raspberry Pi. In
addition, RealVNC offers a cloud service that simplifies the
connection process by reducing the complex network
configuration requirements. Moreover, this feature is useful
when it comes to this project duo to its availability to be
connected easily with the Raspberry Pi that makes it
accessible over the internet securely through the RealVNC
Cloud services without requiring direct network connection.
In addition, this connection is secured through end-to-end
encryption ensuring that remote access is protected against
unauthorized access. The core of RealVNC’s functionality is
the RFB (Remote Framebuffer) protocol which is designed to
work efficiently over low bandwidth and high-latency
connections that makes it suitable for various network
conditions. Moreover, RFB transmits the graphical interface
of the Raspberry Pi in real-time while sending control inputs
from the client. This allows for responsive and interactive user
experience similarly as if someone is directly working on the
Raspberry Pi. This will advantage the project in various ways
which enables convenient setup, management, and
troubleshooting of the Raspberry Pi without the need for
physical access. Also, it facilitates real-time control of the
Raspberry Pi which is crucial for timely modifications in the
project setup or software. In additional, it increases the
system’s accessibility that allowing to interact with the
Raspberry Pi from any location that provided with internet.

PuTTY is an open-source application that was developed
in 1997 by Simon Tatham. It is widely used for remote access
to servers and computing devices like Raspberry Pi over
various network protocols including SSH (Secure Shell) [8].
PuTTY uses the SSH protocol to establish a secure and
encrypted connection between the client which is the user’s
computer and the Raspberry Pi which is the server in this
context. Also, SSH is a network protocol that provides a
secure channel over an unsecured network that makes it ideal
for remotely executing commands and managing system.
Moreover, by using PuTTY as an SSH client, users can
securely log in to the Raspberry Pi from a remote location.
This access will allow users to run command-line operations,
modify configurations, update software, and perform other
tasks directly on the Raspberry Pi shell. PuTTY is useful as
different, fast, and simple way to connect to the Raspberry Pi
terminal without its own monitor, keyboard, or mouse. This
remote access capability is invaluable for monitoring,
maintaining, and troubleshooting the Raspberry Pi especially
when it is deployed in locations that are not easily accessible.
PuTTY uses SSH protocol that ensures that all data
transmitted between the PuTTY client and the Raspberry Pi.
It is encrypted, safe against eavesdropping and malicious
attacks [9]. PuTTY gives great advantages to this project like
it enables efficient management of the Raspberry Pi operating
system and software remotely which is critical part for the
maintenance and update required in this project. Also, the use
of SSH ensures that all interactions with Raspberry Pi are
secure which is important specially when dealing with

sensitive data like a motion detection system. Moreover, it
offers immediate and flexible access to the Raspberry Pi shell
that allow it for quick adjustments and real-time monitor.

AWS Services is heart of this project that connect
everything together. In this IoT camera motion detection
project, various Amazon Web Services (AWS) components
play integral roles in data handling, storage, device
management, and video streaming. The services used include
Amazon S3, AWS IoT Core, IAM (Identity and Access
Management), DynamoDB, and Kinesis Video Streams. Each
of these services contributes uniquely to the project’s
functionality and efficiency. Amazon S3 (Simple Storage
Service) is utilized for storing captured video footage from
motion detection system. It acts as a scalable and secure object
storage service. It provides high durability, availability, and
performance, making it ideal for storing and retrieving any
amount of data in anytime from anywhere. Next, AWS IoT
Core that enables secure, bidirectional communication
between IoT devices like the Raspberry Pi and the AWS
server. It supports the MQTT messaging protocol which is
vital for this project. It ensures a secure and efficient exchange
of messages between the Raspberry Pi and the web application
facilitating real time alerts and commands. Then, DynamoDB
which is a NoSQL database service that used for storing
structured data such as motion detection event logs, date, time
and other specific data efficiently with low latency. It offers
fast and predictable performance with seamless scalability,
making it suitable for applications that require a database with
minimal response times. Also, Amazon Kinesis Video
Streams is used for securely streaming video from the
Raspberry Pi camera to the website for real-time. It facilitates
HLS protocol to real-time streaming and analysis of video
data, enabling applications like live monitoring and motion
detection events. It also integrates easily with other AWS
services for enhanced data processing and storage.

HTML website dashboard hosted using the HTTP
protocol. The website serves as the user interface for the IoT
camera motion detection system. It provides users with
centralized platform to monitor, control and interact with the
motion detection system implemented on the Raspberry Pi 4.
The dashboard is designed to be intuitive, responsive, and
accessible from various devices, including desktops, laptops,
and mobile phones. It contains displays real-time video
streaming from the Raspberry Pi webcam that allowing user
to monitor the environment actively. In addition, notifications
and alerts are displayed when motion is detected with a history
log records all motion detection events, including timestamps.
Also, it provides options to enable or disable motion detection
feature which allows users to adjust the settings. The front-end
built using HTML for structure, CSS for styling and
JavaScript for interactivity and dynamic content loading.
Frameworks like Bootstrap, and Node.js used for responsive
design and streamlined development.

V. IMPLEMENTAION
To apply IoT motion detection in a secure camera in a

proper way, practical steps that involved configuring, setting
up, and programming the Raspberry Pi 4, integrating it with a
webcam, and implementing various AWS services for data
handling and streaming will be explained in detail. Where the
key elements include the development of Python scripts using
OpenCV for motion detection, employing secure
communication protocols like SSH and RFB for system
security, and setting up MQTT for efficient messaging upon

motion events. This section aims to provide a clear insight into
the journey from concept to reality, highlighting the critical
roles of each component in the creation of this advanced IoT
security solution.

A. Raspberry Pi OS Setup
Preparing the Raspberry Pi 4 OS is fundamental step in

preparing the IoT camera motion detection project. The choice
of OS and its configuration are critical as they lay the ground
for the software and applications that will run on the device.
The Raspberry Pi OS for this project will be “Raspberry Pi OS
(Legacy, 64-bit) Full” because its compatibility to cameras.
First step is to insert the MicroSD Card into the computer and
downloading the official Raspberry Pi software “Raspberry Pi
Imager” [10]. Figure.3 shows the user interface of the
software, where in the Raspberry Pi Device the choices will
be on “Raspberry Pi 4” which is our device. For the Operating
System the choice will be on “Raspberry Pi OS (Legacy, 64-
bit)” which is the required OS for our project. Next, choose
the inserted MicroSD Card that will be used in the Raspberry
Pi device in the Storage section. Finally, click into “Next”
button in follow on with the installation until it complete and
it will be ready to be inserted into the Raspberry Pi 4 device.

B. PuTTY & RealVNC Setup
To turn on the Raspberry Pi 4 that will require to insert the
prepared MicroSD into the device. Then, connect the
Raspberry Pi 4 to a monitor, keyboard, and mouse. Where it
will be used only for the first time to setup softwares. First,
complete the step of your Raspberry Pi operation system,
connect it to the network, and make sure to update the system.
Using Raspberry Pi terminal, the wlan0 IPV4 can be extracted
through this command “ifconfig”, which is required to
connect the Raspberry Pi with the PuTTY software to
implement the SSH protocol and controlling the Raspberry Pi
through it terminal. Now back to main computer or laptop that
will be used as main control station which will gives the
opportunities to control massive quantity of Raspberry Pi
devices if needed. Download PuTTY through its official
website [11]. Figure.4 shows the PuTTY software user
interface. In the Host Name (or IP address) insert your
Raspberry Pi IPV4, make sure that the Port is 22, and click to
the “Open” button.

After that, login to your Raspberry Pi through your
username and password which will guarantee a full access into
your Raspberry Pi terminal that gives you a freedom of
controlling and installing, updating softwares etc. Then, to
enter the configuration of the Raspberry Pi write this
command in the terminal “sudo raspi-config” and it will take
you to the configuration tool as shown in Figure.5 so you will
be able to enter Interface Options to enable important settings
to this project. From there make sure that Legacy Camera,
SSH, and VNC is enabled so you can enhance these tools.

After that, providing a graphical and cloud connection
could be beneficial in various ways. So RealVNC is an
efficient and simple way to reach that goal. Through the
Raspberry Pi terminal (can be used through PuTTY) write this
command “vncserver-virtual” to create virtual VNC server as
Figure.6 which will give you the opportunity to use the
graphic interface of the Raspberry Pi without the requirement
of it to be connected to any monitor, mouse, or keyboard. Back
to your main computer, through the RealVNC viewer that can
be downloaded from the official RealVNC website [12] create

Fig. 3. Raspberry Pi Imager User Interface

Fig. 5. Raspberry Pi Software Configuration Tool Interface

Fig. 4. PuTTY Configuration User Interface

an account and add your devices into your “Device Access” to
achieve the Cloud control over the devices.

 After downloading the application Figure.7 shows the
RealVNC user interface, then right click into the interface and
choose the “New connection...” so it gives the availability to
use your Raspberry Pi address that shown in Figure.6 to get
the graphical control into your Raspberry Pi 4 which will
enables the RFB protocol and gives you a full access.

C. Motion Detection Setup
Python and the OpenCV library used to develop an

efficient motion detection application through the Raspberry
Pi and webcam. First, in this project Python 3.9.2 version
while OpenCV will be on 4.8.1.78 version. The idea of the
motion detection is to separate the moving object from the
background and compare the movement through the frames.
To implement that using Python code along with the OpenCV
library. The following explanation breaks down the key
components of the Python script used for detection motion,
providing insights into how each segment contributes to the
overall functionality of the system. Begin with importing the
“cv2” module which is OpenCV library.

import cv2

Next, initializing the camera using “VideoCaputer(0)” that
will initializes video capture through the web camera while
“0” denotes the default camera.

cap = cv2.VideoCapture(0)

Then, the script starts by capturing two consecutive frames
(‘frame1’ and ‘frame2’) from the video feed. These frames are
used to detect motion by comparing them.

ret, frame1 = cap.read()
ret, frame2 = cap.read()

After that, initializing the continues loop using the “while”
function as long as the camera is operational
(‘cap.isOpened()’). Inside this loop the frames are processed
to detect motion. Calculates the absolute difference between
two frames using “cv2.absidiff(frame1, frame2)” This
difference highlights areas of movement while the image is
then converted to grayscale and blurred using Gaussian blur
to reduce noise and improve the accuracy of motion detection.

diff = cv2.absdiff(frame1, frame2)
gray = cv2.cvtColor(diff,
cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)

Applying thresholding that converts the image to a binary
form, making it easier to identify significant movements. In
addition, dilation implementation enlarges the regions of
motion that facilitating the detection of contours. Then,
identifies contours in the dilated image, where contours are the
outlines representing areas of motion.

 _, thresh = cv2.threshold(blur, 20, 255,
cv2.THRESH_BINARY)
dilated = cv2.dilate(thresh, None,
iterations=3)
contours, _ = cv2.findContours(dilated,
cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

The script iterates through each contour using
“cv2.boundingRect(contour)’ to create a rectangular boundary
around the areas of motion. Moreover, small movements are
filtered out based on the contour area, focusing only on
significant motion. To provide visual feedback in the video
feed “cv2.rectangle()” draws rectangles around detected
motion in the frame, while “cv2.imshow()” displays the
current frame with highlighted motion areas.

for contour in contours:
 (x, y, w, h) = cv2.boundingRect(contour)

 if cv2.contourArea(contour) < 900:
 continue
 cv2.rectangle(frame1, (x, y), (x+w,
y+h), (0, 255, 0), 2)

cv2.imshow("feed", frame1)
frame1 = frame2
ret, frame2 = cap.read()

Fig. 6. VNC Virtual Server Command & Required IP Address to be inserted
into RealVNC Viewer

Fig. 7. RealVNC User Interface

The frames are updated at the end of each loop iteration
preparing for the next round of motion detection. This Python
code effectively sets up a motion detection system using frame
differencing, contour analysis, and real-time video processing
as shown in Figure.8. It highlights significant motion in the
video feed and provides a straightforward visual
representation of detected movements. This approach forms
the core of our IoT-based motion detection that enables the
system to capture and react to physical movements in its
environment reliably.

D. AWS Services Setup
Amazon Web Services (AWS) plays a pivotal role in our

IoT project, providing the backbone for video streaming, data
storage, and device management. The integration of various
AWS services was essential to achieving a seamless, efficient,
and scalable IoT solution. The first step in integration AWS
Kinesis Video Streams into our IoT project is to establish an
account with Amazon Web Service (AWS). The first step in
integrating AWS Kinesis Video Streams into our IoT project
was to establish an account with Amazon Web Services
(AWS). Once the account was set up, we navigated to the
AWS Management Console. Here, we accessed the Kinesis
Video Streams service, which is designed to securely stream
video from connected devices to AWS for analytics, machine
learning (ML), and other processing. carefully chose a name
for the stream that aligns with our project's naming
conventions and makes it easily identifiable. The service
offers various configuration options. For our project, we opted
to use the default configuration settings provided by AWS as
shown in Figure.9. This decision was based on our
requirement assessment, which indicated that the default
settings were well-suited for our project’s needs particularly
in terms of stream retention and data encryption.

After completing the stream setup, the new video stream will
be activated. The next critical step in our AWS setup involved
the use of AWS Identity and Access Management (IAM), a
service that helps in securely controlling access to AWS
resources. We started by creating a new IAM user specifically
for this project where Figure.10 shows the specific location
that leads to create new user in IAM dashboard. This user acts
as an identity with specific permissions and is used to interact
with AWS services programmatically. The creation of a
dedicated user for the project ensures that we have fine-
grained control over the access and permissions, enhancing
the security of our system.

After establishing the IAM user, we proceeded to grant the
necessary permissions to this user. This was achieved by
attaching specific policies to the user account. Selectin
“Attach policies directly” under the permissions options is
important to be able to choose the required policies as shown
Figure.11. We selected policies such as
‘AmazonKinesisVideoStreamsFullAccess’,
‘AmazonDynamoDBFullAccess’, and
‘AmazonS3FullAccess’. Each of these policies provides
comprehensive access rights to their respective services:

• AmazonKinesisVideoStreamsFullAccess: Grants full
access to Kinesis Video Streams, allowing our system
to manage and stream video data.

• AmazonDynamoDBFullAccess: Allows complete
interaction with DynamoDB, which we use for data
management and storage.

• AmazonS3FullAccess: Provides full access to
Amazon S3, essential for storing and retrieving data,
particularly the video files in our project.

Fig. 10. Create new user in IAM dashboard

Fig. 9. Create a new video stream in Kinesis Video Streams service

Fig. 8. Demonstration for the process that the motion detection code goes
through to detect the motion, while its starting from the left side where that
process the image to grey colors. The middle image is after applying the blur,
thresh, and dilated codes. Finally, it compares the contours and draws the green
rectangle on the detected motion.

Finally, we generated access keys for this IAM user.
Access keys in AWS are composed of an Access Key ID and
a Secret Access Key, which are used to sign programmatic
requests to AWS. We ensured that these keys were securely
stored, as they are vital for our system’s ability to interact with
AWS services. The Access Key and Secret Key were used in
our code to authenticate and authorize API requests to AWS
services. It's important to note that these keys should be
handled with utmost security and should never be hardcoded
into the application or exposed in any publicly accessible
areas. As part of integrating our IoT system with AWS
services, a vital step involved configuring our JavaScript-
based web dashboard to interact with AWS. This process was
crucial for ensuring seamless communication between our
web interface and the AWS backend, facilitating
functionalities like video streaming, data storage, and device
management. In the JavaScript code powering our dashboard
that integrated the Access Key ID and Secret Access Key that
obtained from AWS IAM after creating the user in the user
summary dashboard as shown in Figure.12.

These keys are essential for authenticating requests made
from our web dashboard to AWS services. The full version of
the code will be in the appendix of this report. It's crucial to
handle these keys securely. In our implementation, we ensured
that the keys were not hard-coded directly into the JavaScript
files. Instead, they were securely stored and retrieved in a
manner that minimizes security risks, such as using
environment variables or secure server-side processes.
Another essential aspect of the integration is setting the correct
AWS region in our JavaScript code. The region should
correspond to the location of the AWS services we are
accessing. It's important because AWS services are region-
scoped, meaning they operate in specific geographic areas as
shown in the following code.

var secretAccessKey =
'PLACE_secretAccessKey_HERE';
var accessKeyId =
'PLACE_accessKeyId_HERE';
var region = 'PLACE_YOUR_REGION';

In our JavaScript dashboard, we configured the AWS
region to match the region where our Kinesis Video Stream,
DynamoDB, and S3 services were set up. This ensures that
our web application communicates with the correct AWS data
centers, thereby reducing latency and improving efficiency.
This integration was a key component of our project, as it
enabled our web-based dashboard to effectively interact with
AWS services. By securely configuring the Access Key,
Secret Access Key, and AWS region, we established and
secure connection between our frontend and AWS's cloud

Fig. 11. Set permissions to create new user in IAM service

Fig. 12. Access key best practices & alternatives dashboard

infrastructure, ensuring reliable and efficient system
operations.

The integration with AWS IoT Core began with the
registration of our IoT devices within the AWS ecosystem.
This process is crucial for enabling secure and managed
communication between the devices and the AWS cloud. In
AWS IoT Core, each IoT device is represented as a “Thing”
This virtual representation includes the device's attributes,
capabilities, and metadata. We navigated to the AWS IoT
Core service and chose the 'Manage' option, then “Things”
Here, we selected 'Create' to initiate the creation of a new
“Thing” as shown in Figure.12.

Each “Thing” was named appropriately to reflect its role
in our project. We adhered to a naming convention that made
it easy to identify and manage the devices. Depending on the
scale of our project, we had the option to create a single
“Thing” for an individual device or multiple “Things” for
several devices. Our choice was based on the project's
requirements and the number of devices deployed. After
creating a “Thing” AWS IoT Core allows the generation and
download of certificates and keys as shown in Figure.13.
These are critical for establishing a secure TLS connection
between the device and AWS services. We followed the
prompt to download these certificates and keys immediately
upon 'Thing' creation, as they cannot be retrieved later. The
downloaded certificates and keys were securely stored on the
devices. This step is essential to prevent unauthorized access
and ensure secure device-to-cloud communication. In
Addition, make sure that after downloading these certificates
and key to be in the same files of the code to inherent it in our
code that attached in the appendix section. Establishing
policies for each 'Thing' is a key step in managing access and
permissions. While, policies in AWS IoT Core define the
permissions for the devices, specifying what they can and
cannot do. We navigated to the 'Security' tab within IoT Core
and selected 'Policies.' Here, we created a new policy by
defining the actions (like 'connect', 'publish', 'subscribe',
'receive') and resources the device should have access to. We
adopted a principle of least privilege, ensuring that each
'Thing' had only the necessary permissions to perform its
function. After that, created policies were then attached to the
certificates associated with each 'Thing.' This attachment is
what enforces the defined permissions and ensures secure and
controlled device operations.

Our project involved the efficient routing of messages
from IoT devices to AWS services. To achieve this, we
leveraged AWS IoT Core’s rules and roles. A role in AWS
IoT Core is required to grant the IoT rule permission to
interact with other AWS services, such as DynamoDB. We
created a new IAM role specifically for IoT message routing.
This role was designed to have the necessary permissions to
write data to DynamoDB. Create new rule as shown in
Figure.14.

Fig. 12. Create new thing in Amazon IoT Core service

Fig. 13. Downloadable certificates and keys that will only popup for one
time after Thing creation

Fig. 14. Create new rule dashboard from AWS IoT Core

Within AWS IoT Core, we defined rules using SQL-like
statements as shown in Figure.15. These rules dictate how the
incoming IoT data is processed and routed. For instance, a rule
could be set up to forward data to DynamoDB when certain
conditions are met, such as a specific sensor value being
recorded.

 We chose DynamoDB due to its ability to handle high-
velocity data influxes which is typical in IoT applications and
it will enable the power MQTT. Its fully managed nature
meant that we could focus on application logic without
worrying about the underlying database administration.
DynamoDB's fast and predictable performance along with its
ability to scale automatically, made it an ideal choice for
storing and retrieving IoT data. In the AWS Management
Console, under the DynamoDB service, we created a new
table as shown in Figure.16. The table was named
appropriately to reflect the data it would store, such as sensor
readings or motion events. We defined a primary key that best
suited our data structure, ensuring efficient access and
querying capabilities. Additional attributes were defined
based on the type of data we were storing. The IAM role
created for message routing in AWS IoT Core was assigned
to our DynamoDB table. This role grants the necessary
permissions for AWS IoT Core to write data to the table. By
controlling the access through IAM roles, we ensured that
only authorized services and users could access or modify the
data in DynamoDB, maintaining the integrity and security of
our data.

Amazon S3 (Simple Storage Service) was chosen for its
scalability, security, and performance for storing and
retrieving any amount of data. The first step in integrating S3
into our project involved creating a new S3 bucket. We started
by navigating to the Amazon S3 service within the AWS

Management Console. Using the 'Create Bucket' option, we
began the process of setting up a new storage container. Then,
we chose a unique and descriptive name for the bucket,
adhering to AWS naming conventions. This name helps in
easily identifying the bucket’s purpose and its association with
our project. Moreover, it is crucial to select the appropriate
AWS region for our bucket. The region choice affects the data
latency and compliance with data sovereignty laws. We chose
a region closest to our user base to optimize access speeds.
Next, configuring the access and public settings of the S3
bucket was a critical step, ensuring the right balance between
accessibility and security. Where, ACLs are used to manage
access to bucket contents. We enabled ACLs on our bucket to
have granular control over who can access the data stored in it
as shown in Figure.17. By using ACLs, we could specify
permissions for individual objects within the bucket, offering
flexibility in controlling access to different types of data.

The decision to allow public access to the bucket was
made based on the nature of the data and the project
requirements. For instance, if the bucket contains publicly
sharable data, such as public video streams, enabling public
access is beneficial. In the 'Block Public Access' settings for
the bucket, we carefully configured the permissions. We
ensured that public access was allowed for specific use cases
while maintaining the security of sensitive data as shown in
Figure.18. Despite enabling public access for certain
scenarios, we implemented additional security measures, such
as bucket policies and IAM roles, to prevent unauthorized
access or data breaches. Finally, setting up the Amazon S3
bucket was a fundamental aspect of our project, providing a
secure and scalable solution for storing large volumes of data
generated by our IoT system. The careful configuration of
ACLs and public access settings ensured that we had the right
mix of accessibility and security tailored to our project's
needs.

Fig. 15. SQL statement

Fig. 16. Rule actions creation including DynamoDB table

Fig. 17. Bucket Creation General Configuration

Through careful configuration and integration of these AWS
services, we successfully established strong infrastructure for
our IoT motion detection system. This setup enabled us to
stream video content, store and manage data effectively, and
ensure secure and efficient communication between the
various components of our system.

E. MQTT Setup
After implementing the AWS services in prober way it’s

essential to apply MQTT (Message Queuing Telemetry
Transport) protocol. We chose the MQTT protocol for this
project duo to its lightweight nature and effectiveness in IoT
scenarios [13]. The integration involved configuring our
Python application to communicate with AWS IoT Core using
MQTT on QoS (Quality of Service) level 0. First, to securely
communicate with AWS IoT Core, it was necessary to first set
up and install the required certificates and keys. We used a
Root CA certificate “iotRootCA1.pem”, a public certificate
“deviceCert.crt”, and a private key “deviceCert.key”, which
were placed in a “certs” directory. We used the “paho-mqtt”
library in Python, which is a popular MQTT client for Python
applications. The client was configured to use TLS (Transport
Layer Security) for secure communication. This involved
setting the TLS context with the previously mentioned
certificates and specifying the TLS version as
“ssl.PROTOCOL_TLSv1_2”. A callback function
“on_connect” was defined to handle the event of successfully
connecting to the MQTT broker. This function updates the
“connflag” variable to indicate an active connection.

connflag = False
def on_connect(client, userdata, flags,
response_code):
 global connflag
 connflag = True

 print("Connected with status:
{0}".format(response_code))

Where, MQTT client connects to the AWS IoT broker using
the specified URL “mqtt_url” which can be found from AWS
IoT Core in the MQTT test client in the connection details
under “Endpoint”, and the standard MQTT port 8883 for
secure communication. The client then starts a network loop,
which allows it to process incoming and outgoing messages.
In a continuous while loop, the application checks for a
successful connection. Once connected, it periodically
publishes a JSON-formatted message to a specified topic
“(raspi/data)”. The message contains simulated sensor data, a
timestamp, and additional information. This data is serialized
into JSON format using Python’s “json” module. Moreover,
for our application, we used QoS level 0 for message
publishing. This level, also known as “At most once” delivery,
is a fire-and-forget approach that does not require
acknowledgment of message receipt, suitable for our use-case
where occasional message loss is acceptable and minimal
overhead is desired. This implementation of MQTT protocol
with AWS IoT Core using Python provided a robust and
efficient way to send data from our IoT devices to the cloud.
The use of secure certificates and TLS ensured that our
device-to-cloud communication remained secure, while the
lightweight MQTT protocol facilitated reliable data
transmission even with limited bandwidth where the code is
provided in the appendix section.

VI. RESULTS AND DISCUSSION

A. Functionality Testing & Interface Efficiency
After implementing the motion detection system and

integrating it with AWS services, we conducted thorough
testing to evaluate its functionality and the efficiency of the
website dashboard interface. The dashboard is the central
control panel for users, effectively displaying real-time data
and providing control options. It is divided into three primary
sections: Real-Time video Stream, Inbox Section, and Control
Section. At the real-time video stream area showcases the live
video feed from the Raspberry Pi camera. Also, the successful
implementation of the HLS (HTTP Live Streaming) protocol
ensures smooth and continuous video streaming, with minimal
latency and buffering issues. We evaluated the streaming
quality under various network conditions to ensure consistent
performance. while Figure.19 show Raspberry Pi through the
process and the real-time video stream is shown in Figure.20.

Fig. 18. Block Public Access settings for new bucket creation

Fig. 19. Raspberry Pi Streaming and detecting motion while sending info.
to AWS Service

Next, is the inbox section where this segment displays
notifications and details of motion detection events. Once
motion is detected, the footage is uploaded to AWS S3, and
the corresponding details are displayed here. The exact time
and details of the motion event are captured using MQTT
protocol, enhancing the accuracy of information. We tested
the reliability of motion detection alerts and the seamless
uploading of video clips to S3. The focus was on the
timeliness of alerts and the integrity of the data stored.
Figure.21 showing this section implemented in our website
dashboard.

In addition, each alert in the Inbox Section represents a
specific motion detection event, complete with a timestamp
and a brief description. When a user clicks on an alert, it
triggers a pop-up window as shown in Figure.22. The pop-up
window displays the video footage associated with the
selected motion event. This footage is streamed from the AWS
S3 storage where it was automatically uploaded during the
motion detection process. The video can be played, paused,
and viewed in full-screen mode for detailed examination. This
feature provides immediate access to recorded events,
enhancing the user's ability to monitor and review surveillance
footage. Users can easily navigate through different recorded
events, making the system more efficient for security
monitoring. Moreover, Rigorous testing was conducted to
ensure that the pop-up window loads quickly and the
streaming from AWS S3 is smooth and uninterrupted. The
user interface was tested for responsiveness and ease of use,

ensuring that the feature is accessible across various devices
and screen sizes. The integration with AWS S3 for storing
recorded videos plays a crucial role in this feature. It ensures
reliable and secure storage of surveillance footage, which is
readily accessible through the user interface.

Then, control section where users can schedule the
operational hours of the camera, and toggle the streaming
functionality on and off. Additionally, the delay time for the
motion detection algorithm can be adjusted. The
responsiveness and effectiveness of these controls were tested,
ensuring that changes were applied in real-time and
functioned as expected. Figure.23 showing the inbox section
in our website dashboard.

The dashboard design is user-friendly, with intuitive
navigation and clear categorization of different functionalities.
We assessed the ease of use, response time of the interface,
and the clarity of the information presented. The website
interface is responsive, adapting to different screen sizes and
devices. Cross-device compatibility tests were conducted to

Fig. 21. Inbox section from our website dashboard that using MQTT, and
S3 using AWS & Python Code

Fig. 23. Control section from website dashboard to control different
settings

Fig. 20. Real-time video stream from the website that it connected from AWS
Service us

Fig. 22. Auto Detection after motion detection popup

ensure consistent user experience across various platforms.
Also, Figure.24 shows the full website dashboard while
everything is implemented successfully.

The functionality testing of our IoT motion detection
system and its website dashboard demonstrated high
efficiency and reliability. The Real-Time Video section
successfully delivers live footage with HLS protocol, the
Inbox Section accurately records and displays motion events
with AWS integration, and the Control Section offers
effective management of the camera and algorithm settings.
Overall, the interface's user-centric design and responsive
nature contribute significantly to its efficiency, making it a
powerful tool for users to interact with and control their IoT-
based security system.

B. Challenges & Solutions
In the initial stages of the project, there was a significant

hurdle related to hardware integration. Despite the following
standard procedures for connecting and setting up the web
camera with Raspberry Pi where the system failed to
recognize the camera. This issue was critical as the camera’s
functionality is central to our motion detection system. To
diagnose the problem, we first verified the physical
connection and ensured that the camera module is correctly
attached to the Raspberry Pi. After confirming the hardware
setup, we turned our attention to the software aspect. We
hypothesized that the issue might stem from the Raspberry
Pi’s operating system. The Raspberry Pi was running on the
default OS version which suspected that it might not fully
support the camera functionalities required for our project. So,
we decided to switch the operation system to a version that
better suited for our needs. This involved formatting the
MicroSD card to remove the existing operation system and
then installing the Raspberry Pi Legacy OS version, known
for its support for camera modules. After that, we ensured that
the camera was enabled in the Raspberry Pi configuration
settings. In addition, to verify the camera’s functionality we
used ‘libcamera’ and ‘ripcam’ software to test and confirm
that the camera was now detectable and operational following

the official Raspberry Pi camera documentation [14]. This
approach successfully resolved the issue. The Raspberry Pi
Legacy OS provided the necessary support for the camera, and
our subsequent test confirmed that the camera was fully
functional. This resolution was a pivotal moment in our
project as it allowed us to proceed with the core development
of the motion detection system. Moreover, this challenge
underscored the importance of compatibility between
hardware components and the operating system in IoT
projects. Also, it highlighted the necessity of thorough testing
and validation at every step of the system setup.

During the development we encountered a critical
challenge with the Raspberry Pi camera module. Despite
proper software configurations and multiple attempts at
troubleshooting, the camera module remained undetectable by
the Raspberry Pi. To isolate the cause of the problem we
initially focused on software-based solutions, examining
various methods and setting within the Raspberry Pi operation
system. However, when these efforts did not yield results so
we shifted our focus to potential hardware issues. We decided
to conduct a thorough examination of the physical connections
and we used a multimeter device to check the continuity and
integrity of the camera module’s wiring. The multimeter test
revealed a crucial insight where the camera module’s wire was
defective, which explained the connectivity issues we were
facing. With this knowledge, we decided to replace the
malfunctioning camera module with considering the project
timeline and resource availability. We opted for a readily
accessible alternative a new webcam compatible with the
Raspberry Pi. This decision was made to ensure minimal
disruption to the project progress. Replacing the Raspberry Pi
camera module with a new webcam proved to be a successful
solution. After applying the software setting to the new
camera, the new camera immediately recognized by the
Raspberry Pi and we were able to proceed with the
implementation of the motion detection functionality. This not
only resolved the immediate issue but also reinforced the
importance of having contingency plans and flexibility in
hardware selection for IoT projects.

One of the significant challenges we encountered in our
project was establishing a connection between the Raspberry
Pi camera and AWS Kinesis Video Streaming. This step was
crucial for enabling real-time video streaming capabilities in
our IoT system. Where, the complexity of this challenge lay
in the intricacies of configuring both the hardware (Raspberry
Pi camera) and the AWS services to work seamlessly together.
The initial attempts to establish this connection were met with
difficulties, hindering the progress of our streaming
functionality. To resolve this issue, our first step was to revisit
the IAM (Identity and Access Management) configurations in
AWS. We realized that the IAM roles and permissions
associated with our AWS account needed adjustments to
allow the Raspberry Pi camera to communicate effectively
with Kinesis Video Streaming. Alongside modifying the IAM
roles, we closely followed the guidelines provided by Amazon
for connecting devices to Kinesis Video Streaming. These
guidelines offered a structured approach and best practices for
setting up the connection. So, we edited the IAM roles to grant
the necessary permissions that would enable the Raspberry Pi
camera to stream video data to the AWS service. This
involved ensuring that the IAM roles had policies allowing
access to Kinesis Video Streaming. Following the Amazon
guide [15], we implemented the recommended settings and
configurations on our Raspberry Pi system. This included

Fig. 24. Website dashboard successfully working

installing necessary libraries and configuring the network
settings as per AWS requirements as shown in the following
commands that required to be written in the Raspberry Pi
Terminal.

$ export GST_PLUGIN_PATH=Directory Where You
Cloned the SDK/amazon-kinesis-video-streams-
producer-sdk-cpp/build
$ export AWS_DEFAULT_REGION=AWS Region i.e.
us-east-1
$ export AWS_ACCESS_KEY_ID=Access Key ID
$ export AWS_SECRET_ACCESS_KEY=Secret Access
Key
$./kvs_gstreamer_sample Your Stream Name

The combination of adjusting IAM roles and adhering to
Amazon's guidelines proved to be successful. We were able to
establish a stable and efficient connection between the
Raspberry Pi camera and AWS Kinesis Video Streaming. This
resolution was a pivotal moment in our project, as it not only
solved the immediate problem but also provided us with
valuable insights into the integration of IoT devices with cloud
services. The successful implementation of this connection
was key to enabling the real-time video streaming
functionality of our system. Moreover, this resolution was a
pivotal moment in our project, as it not only solved the
immediate problem but also provided us with valuable
insights into the integration of IoT devices with cloud
services. The successful implementation of this connection
was key to enabling the real-time video streaming
functionality of our system. This challenge highlighted the
importance of understanding the nuances of cloud services
and their integration with IoT devices. It also underscored the
value of thorough documentation and following best practices
in technology integration.

In an advanced phase of our project, we faced a complex
challenge when integration real-time streaming with motion
detection functionality. The Raspberry Pi camera was already
being used for live streaming to AWS services specifically
AWS Kinesis Video Stream. We encountered a limitation
where the Raspberry Pi camera could not be opened
simultaneously by two different applications which impeded
our ability to apply the motion detection code to the live
stream and record motion triggered events. Understanding the
criticality of simultaneous streaming and motion detection for
our project's success, we embarked on a solution exploration.
Our aim was to find a way to enable motion detection on the
live stream without disrupting the ongoing streaming service.
After extensive research, we discovered a GitHub repository
[16] with code that appeared promising for our needs. We
adapted the code from GitHub to enable continuous recording
of short clips from the active stream on AWS Kinesis Video
Stream. Additional This solution allowed us to bypass the
limitation of accessing the camera by two applications
simultaneously. We then developed a Python script tailored to
our requirements which it will be fully provided in the
appendix. This script would process each recorded clip and
applying our motion detection algorithm. On detecting motion
in a clip, the script was programmed to upload the relevant
footage to AWS S3 service that served our storage solution.
Conversely, if no motion was detected the script would
automatically delete the clip to conserve storage space and
system resources. The upcoming is an insight through the code
implementation. The script is using the exactly same motion
detection code that it already explained in the Implementation

section of this report. In addition, it integrates with AWS S3
which is a cloud storage service that uploads videos that
contain motion events. The script runs in a continuous loop,
constantly checking for new video clips to analyze. Moreover,
it regularly checks a specified directory for new video files
(specifically ‘.mkv’ files). In addition, if any motion detection
found it will rename the video file with a timestamp, it will
call the ‘upload_video’ function to upload the video to AWS
S3 service, and it will delete the video from the local storage
if it has been successfully uploaded. On the other hand, the if
no motion detected the video will be removed from the local
storage to save space. This innovative approach successfully
resolved our problem. We were able to maintain a continuous
live stream while effectively implementing motion detection
on the stream. The system's ability to selectively store only
motion-triggered events on AWS S3 significantly optimized
our storage usage and made the system more efficient.
Moreover, this challenge was a testament to the complexities
inherent in integrating multiple advanced technologies such as
real-time streaming, motion detection, and cloud services. It
highlighted the necessity of creative problem-solving in IoT
projects and the value of open-source resources like GitHub.
Additionally, this experience reinforced the importance of
flexible thinking and adaptability in the face of technical
constraints. Our success in overcoming this obstacle has not
only improved our system's functionality but also enriched the
technical expertise and problem-solving skills.

VII. CONCLUSION
The project has effectively showcased the potential of

integrating Internet of Things (IoT) technology with advanced
security systems. Utilizing a Raspberry Pi 4 and web cameras,
the project successfully developed a sophisticated motion
detection system, demonstrating the feasibility and efficiency
of IoT in real-world security applications. The integration of
AWS cloud services further enhanced the system's
capabilities, providing a robust, scalable, and secure backend
for data management and device control. This project
achieved an implementation of an advanced motion detection
system using IoT devices, seamless integration of Raspberry
Pi with cloud services for data handling and storage, real-time
system monitoring and management enabled through a user-
friendly dashboard, and overcoming technical challenges
related to hardware integration and streaming protocols. The
project represents a significant step forward in the field of IoT
security systems. By using the power of IoT and cloud
computing, it demonstrates how traditional security systems
can be transformed into more intelligent, efficient, and
responsive solutions. This project serves as a blueprint for
future IoT security systems, highlighting the potential for
enhanced safety, real-time monitoring, and remote
management capabilities. For future enhancements, the
project could explore different aspects like the integrating
machine learning for smarter motion detection and predictive
analytics, optimizing the system for lower power
consumption, ensuring the system can work with various IoT
devices and cameras in the same time, incorporating stronger
encryption and privacy measures, and developing a more
adaptable and feature-rich user dashboard. The success of the
project is a testament to the innovative application of IoT in
security. It has not only achieved its primary goals but also
provided valuable lessons in IoT system design, cloud
integration, and problem-solving under real-world constraints.
The project underscores the importance of adaptability,
continuous learning, and the effective use of emerging

technologies in addressing modern security challenges. As
what is popular in IoT-based security systems, it sets a high
standard for future developments in this field while
highlighting the limitless possibilities of IoT technology in
enhancing safety and security in our increasingly connected
world.

ACKNOWLEDGMENT
Special thanks go to University of Bahrain for providing

essential technical support, and to my family and friends for
their unwavering encouragement and support throughout this
endeavor. This project is a testament to the collaborative
efforts and steadfast support of each individual involved.

REFERENCES
[1] A. R. Syafeeza, M. K. Mohd Fitri Alif, Y. Nursyifaa Athirah, A.

S. Jaafar, A. H. Norihan, and M. S. Saleha, “IoT based facial
recognition door access control home security system using
raspberry pi,” International Journal of Power Electronics and
Drive Systems, vol. 11, no. 1, pp. 417–424, Mar. 2020, doi:
10.11591/ijpeds.v11.i1.pp417-424.

[2] H. H. Qasim, A. E. Hamza, L. Audah, H. H. Ibrahim, H. A.
Saeed, and M. I. Hamzah, “Design and implementation home
security system and monitoring by using wireless sensor
networks WSN/internet of things IoT,” International Journal of
Electrical and Computer Engineering, vol. 10, no. 3, pp. 2617–
2624, Aug. 2020, doi: 10.11591/ijece.v10i3.pp2617-2624.

[3] C. Sisavath and L. Yu, “Design and implementation of security
system for smart home based on IOT technology,” in Procedia
Computer Science, Elsevier B.V., 2021, pp. 4–13. doi:
10.1016/j.procs.2021.02.023.

[4] Z. Tian, L. Zhang, G. Wang, and X. Wang, “An RGB camera-
based fall detection algorithm in complex home environments,”
Interdisciplinary Nursing Research, vol. 1, no. 1, pp. 14–26,
Nov. 2022, doi: 10.1097/nr9.0000000000000007.

[5] K. Bjerge, C. E. Frigaard, and H. Karstoft, “Object Detection of
Small Insects in Time-Lapse Camera Recordings,” Sensors, vol.
23, no. 16, Aug. 2023, doi: 10.3390/s23167242.

[6] E. Wu, “Meet The Brand New Raspberry Pi 4 8GB - Latest Open
Tech From Seeed.” Accessed: Dec. 29, 2023. [Online].
Available: https://www.seeedstudio.com/blog/2020/05/28/meet-
the-brand-new-raspberry-pi-4-8gb-ram/

[7] Lucy, “How does VNC technology work? – RealVNC Help
Center.” Accessed: Dec. 30, 2023. [Online]. Available:
https://help.realvnc.com/hc/en-us/articles/360002320638-How-
does-VNC-technology-work-

[8] O. Jimmy, “What is PuTTY and some useful tips to use it easily.”
Accessed: Dec. 30, 2023. [Online]. Available:
https://pandorafms.com/blog/putty/

[9] Sharon Shea, “How to prevent network eavesdropping attacks |
TechTarget.” Accessed: Dec. 30, 2023. [Online]. Available:
https://www.techtarget.com/searchsecurity/answer/How-to-
prevent-network-sniffing-and-eavesdropping

[10] “Raspberry Pi OS – Raspberry Pi.” Accessed: Dec. 31, 2023.
[Online]. Available: https://www.raspberrypi.com/software/

[11] “Download PuTTY - a free SSH and telnet client for Windows.”
Accessed: Jan. 01, 2024. [Online]. Available: https://putty.org/

[12] “Download VNC Viewer for Raspberry Pi | VNC® Connect.”
Accessed: Jan. 01, 2024. [Online]. Available:
https://www.realvnc.com/en/connect/download/viewer/raspberry
pi/

[13] B. Mishra and A. Kertesz, “The use of MQTT in M2M and IoT
systems: A survey,” IEEE Access, vol. 8, pp. 201071–201086,
2020, doi: 10.1109/ACCESS.2020.3035849.

[14] “Raspberry Pi Documentation - Camera software.” Accessed:
Jan. 01, 2024. [Online]. Available:
https://www.raspberrypi.com/documentation/computers/camera_
software.html

[15] “Stream video to your Kinesis video stream and view the live
stream - Amazon Kinesis Video Streams.” Accessed: Jan. 02,
2024. [Online]. Available:
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/produ
cersdk-cpp-rpi-run.html

[16] “aws-samples/amazon-kinesis-video-streams-consumer-library-
for-python.” Accessed: Jan. 01, 2024. [Online]. Available:
https://github.com/aws-samples/amazon-kinesis-video-streams-
consumer-library-for-python/tree/main

VIII. APPENDIX

A. AWS Service (MQTT & S3) & Motion Detection Code

import cv2
import os
from datetime import datetime
import boto3
from botocore.client import Config
import paho.mqtt.client as mqtt
import ssl
from time import sleep
import json

AWS IoT Core credentials
mqtt_url = "a1tw66q2ooe9x7-ats.iot.eu-central-1.amazonaws.com"
root_ca = './certs/iotRootCA1.pem'
public_crt = './certs/deviceCert.crt'
private_key = './certs/deviceCert.key'

ACCESS_KEY_ID = "WRITE_YOUR_ACCESS_KEY_HERE"
ACCESS_SECRET_KEY = "WRITE_YOUR_ACCESS_SECRET_KEY_HERE"
BUCKET_NAME = "WRITE_YOUR_BUCKET_NAME_HERE"

connflag = False

motion_detected = False

videos_dir = r"./amazon-kinesis-video-streams-consumer-library-for-python/records"

def search_for_videos(videos_dir):
 files = os.listdir(videos_dir)
 videos = []

 # filter videos in dir
 for file in files:
 if file.endswith(".mkv") and str(file).count("Record of") <= 0:
 videos.append(os.path.join(videos_dir,file))
 print(videos)

 return videos

def on_connect(client, userdata, flags, response_code):
 global connflag
 connflag = True
 print("Connected with status: {0}".format(response_code))

def upload_video(video_path):
 video_name = str(video_path).split('/')[-1]

 data = open(video_path, 'rb')
 s3 = boto3.resource(
 's3',
 aws_access_key_id=ACCESS_KEY_ID,
 aws_secret_access_key=ACCESS_SECRET_KEY,
 config=Config(signature_version='s3v4')
)
 s3.Bucket(BUCKET_NAME).put_object(Key=video_name, Body=data,
ContentType='video/mkv', ACL='public-read')
 return True

client = mqtt.Client()
client.tls_set(root_ca,
 certfile = public_crt,
 keyfile = private_key,
 cert_reqs = ssl.CERT_REQUIRED,
 tls_version = ssl.PROTOCOL_TLSv1_2,
 ciphers = None)

client.on_connect = on_connect

print ("Connecting to AWS IoT Broker...")
client.connect(mqtt_url, port = 8883, keepalive=60)
client.loop_start()

while True:
 videos = search_for_videos(videos_dir)
 for video in videos:
 motion_detected = False
 try:
 cap = cv2.VideoCapture(video)

 # Read the first frame
 ret, frame1 = cap.read()
 ret, frame2 = cap.read()

 while cap.isOpened():

 diff = cv2.absdiff(frame1, frame2) # Find the absolute difference
between frames
 gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) # Convert to grayscale
 blur = cv2.GaussianBlur(gray, (5, 5), 0) # Apply Gaussian blur
 _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) # Apply
thresholding
 dilated = cv2.dilate(thresh, None, iterations=3) # Dilate the
thresholded image
 contours, _ = cv2.findContours(dilated, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE) # Find contours

 for contour in contours:

 (x, y, w, h) = cv2.boundingRect(contour)

 if cv2.contourArea(contour) < 900:
 continue # Ignore small movements

 cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 255, 0), 2) # Draw
rectangle around motion area
 motion_detected = True

 # cv2.imshow("feed", frame1)
 frame1 = frame2
 ret, frame2 = cap.read()

 if cv2.waitKey(40) == 27: # Press 'Esc' key to exit
 break
 except cv2.error as e:
 print("CV2 ERROR:", e)
 except Exception as ge:
 print(ge)
 finally:
 try:
 cv2.destroyAllWindows()
 cap.release()

 print("motion_detected:", motion_detected)
 # only upload the video when motion has been detected
 if(motion_detected):

 # change the name in it is not changed already
 if str(video).count("Record of") <= 0:
 now = datetime.now()
 new_name = os.path.join(videos_dir, "Record of " +
now.strftime("%Y-%m-%d %H-%M-%S") + ".mkv")
 os.rename(video, new_name)
 video = new_name

 # upload the video
 uploaded = upload_video(video)
 if connflag == True:
 timestamp = datetime.now().strftime("%m/%d/%Y, %H:%M:%S")
 data = json.dumps({"timestamp":timestamp, "disc":45,
"status":"GREEN"})
 client.publish("raspi/data", payload=data, qos=0)
 else:
 print ("waiting for connection...")

 # remove the video if there is no motion or it has been uploaded
 if uploaded or not motion_detected:
 os.remove(video)

 except Exception as e:
 print(e)
 sleep(5)

B. Website dashboard JavaScript Code

const express = require('express');
const app = express();
const server = require('http').Server(app);
const io = require('socket.io')(server);
const path = require('path');
const bodyParser = require('body-parser');
const aws = require('aws-sdk')
const { device: deviceModule } = require('aws-iot-device-sdk');
const multer = require('multer')
const multerS3 = require('multer-s3');

const port = 3000;

var HLS_URL = null;
var errorCode = null;
var DaynamoDB;

var secretAccessKey = 'WRITE_YOUR_ACCESS_SECRET_KEY_HERE';
var accessKeyId = 'WRITE_YOUR_ACCESS_KEY_HERE';
var region = 'WRITE_YOUR_REGION_HERE';
const BUCKET = 'WRITE_YOUR_BUCKET_NAME_HERE';
var tableName = "WRITE_YOUR_DYNAMODB_TABLE_NAME_HERE";

app.use(express.static(path.join(__dirname, 'public')));
app.use(bodyParser.urlencoded({ extended: true }));

app.set('view engine', 'ejs');

aws.config.update({
 secretAccessKey: secretAccessKey,
 accessKeyId: accessKeyId,
 region: region,

});

const s3 = new aws.S3();
var docClient = new aws.DynamoDB.DocumentClient();

const upload = multer({
 storage: multerS3({
 s3: s3,
 acl: "public-read",
 bucket: BUCKET,

 key: function (req, file, cb) {
 console.log(file);
 cb(null, file.originalname)
 }
 })
})
app.get('/', function(req, res){
 res.sendFile(__dirname + '/views/index.html');
})

app.get("/list", async (req, res) => {

 var dd;

 let r = await s3.listObjectsV2({ Bucket: BUCKET }).promise();
 let x = r.Contents.map(item => item.Key);

 var params = {
 TableName: tableName,
 };

 docClient.scan(params).eachPage((err, data, done) =>{
 if (err) {
 console.error("Unable to read item. Error JSON:", JSON.stringify(err, null,
2));
 } else {
 allData = JSON.stringify(data);
 items = JSON.parse(allData).Items;
 DaynamoDB = items.map(item => item.payload);
 aws_data = {
 s3: x,
 dynamodb: DaynamoDB
 }
 res.send(aws_data)

 }
 })

})

var CameraInput;
var DetectionInput;
var SetTimeInput;
var startTimeInput;
var endTimeInput;
var delayDetectionInput;

var isTrue = false;

app.post('/submit', function(req, res){
 res.sendFile(__dirname + '/views/index.html');
 CameraInput = req.body['Camera'];
 DetectionInput = req.body['Detection'];
 SetTimeInput = req.body['SetTime'];
 startTimeInput = req.body['startTime'];
 endTimeInput = req.body['endTime'];
 delayDetectionInput = req.body['delayDetection'];
 isTrue = true;
});

server.listen(port, async function(){
 console.log('Listening on port ' + port);

 io.on('connection', async function(socket){

 console.log('User Connected!!!');
 socket.emit("Camera", CameraInput);
 socket.emit("Detection", DetectionInput);
 socket.emit("SetTime", SetTimeInput);
 socket.emit("startTime", startTimeInput);
 socket.emit("endTime", endTimeInput);
 socket.emit("delayDetection", delayDetectionInput);

 setInterval(async () => {
 // AWS S3 Get Files Name
 let r = await s3.listObjectsV2({ Bucket: BUCKET }).promise();
 let x = r.Contents.map(item => item.Key);

 // AWS DynamoDB Get Data
 var params = {
 TableName: tableName,
 };

 docClient.scan(params).eachPage((err, data, done) =>{
 if (err) {
 console.error("Unable to read item. Error JSON:",
JSON.stringify(err, null, 2));
 } else {
 allData = JSON.stringify(data);
 items = JSON.parse(allData).Items;
 DaynamoDB = items.map(item => item.payload);
 }
 })

 aws_data = {

 s3: x,
 dynamodb: DaynamoDB
 }
 socket.emit("listLenth", aws_data);
 }, 1000);

 // send the stream HLS URL or 404
 KV_AWS();
 if(errorCode == 404){
 socket.emit("stream", errorCode);
 }
 else{
 socket.emit("stream", HLS_URL);
 }

 });

});
async function KV_AWS(){

 var streamName = 'STREAM_NAME';

 // Step 1: Configure SDK Clients
 var options = {
 accessKeyId: ' WRITE_YOUR_ACCESS_KEY_HERE ',
 secretAccessKey: 'WRITE_YOUR_ACCESS_SECRET_KEY_HERE',
 region: 'WRITE_YOUR_REGION_HERE'
 }

 var kinesisVideo = new aws.KinesisVideo(options);
 var kinesisVideoArchivedContent = new aws.KinesisVideoArchivedMedia(options);

 try{
 // Step 2: Get a data endpoint for the stream
 const kv_response = await kinesisVideo.getDataEndpoint({
 StreamName: streamName,
 APIName: "GET_HLS_STREAMING_SESSION_URL"
 }, function(err, response) {
 if (err) { return; } // console.error(err)
 kinesisVideoArchivedContent.endpoint = new aws.Endpoint(response.DataEndpoint);
 }).promise();

 // Step 3: Get an HLS Streaming Session URL
 var playbackMode = 'LIVE'; // 'LIVE' or 'ON_DEMAND'
 //var startTimestamp = new Date('START_TIMESTAMP'); // For ON_DEMAND only
 //var endTimestamp = new Date('END_TIMESTAMP'); // For ON_DEMAND only

 var fragmentSelectorType = 'SERVER_TIMESTAMP'; // 'SERVER_TIMESTAMP' or
'PRODUCER_TIMESTAMP'
 const SESSION_EXPIRATION_SECONDS = 60*60

 const hls_response = await kinesisVideoArchivedContent.getHLSStreamingSessionURL({
 StreamName: streamName,
 PlaybackMode: playbackMode,
 HLSFragmentSelector: {
 FragmentSelectorType: fragmentSelectorType,
 TimestampRange: playbackMode === 'LIVE' ? undefined : {
 // StartTimestamp: startTimestamp,
 // EndTimestamp: endTimestamp
 }
 },
 Expires: parseInt(SESSION_EXPIRATION_SECONDS)
 }, function(err, response) {
 if (err) {

 errorCode = err.statusCode;

 if(errorCode == 400){
 return hls_response;
 }

 }

 if(errorCode == null){
 HLS_URL = response.HLSStreamingSessionURL, response;
 }

 }
).promise();

 }
 catch(error){
 }

 }

C. Website Inbox JavaScript Code

var list = [];

$(function(){
 let socket = io();

 socket.on("listLenth", (data) => {
 var idNum = 0;
 var id;

 const container = document.getElementById('inboxMSG');
 var ChildLenght = $('#inboxMSG').children().length;

 if(data.s3.length > ChildLenght){
 var link = getLink('BUCKET_NAME', 'REIGON_NAME');
 s3Data = data.s3;
 DynamoDBData = data.dynamodb;

 var time = data.dynamodb.map(item => item.timestamp);

 $('.inboxLen').text('Inbox [' + s3Data.length + ']');

 for (let i = s3Data.length-1; i < s3Data.length; i++) {
 id = 'msg' + i;
 addRow(id, msg(i+1 ,id, link+s3Data[i], time[i]));

 }
 }

 });

});

getList('/list', (data)=>{
 var id;

 const container = document.getElementById('inboxMSG');
 removeAllChildNodes(container);

 var link = getLink('BUCKET_NAME', 'YOUR_REIGON');
 s3Data = data.s3;
 DynamoDBData = data.dynamodb;

 var time = data.dynamodb.map(item => item.timestamp);

 $('.inboxLen').text('Inbox [' + s3Data.length + ']');

 for (let i = 0; i < s3Data.length; i++) {
 id = 'msg' + i;
 addRow(id, msg(i+1 ,id, link+s3Data[i], time[i]));

 }
})

function addAllChildNodes(data){
 var id;

 const container = document.getElementById('inboxMSG');

 var link = getLink('BUCKET_NAME', 'REGION_NAME');
 rList = data;

 $('.inboxLen').text('Inbox [' + data.length + ']');

 for (let i = 0; i < data.length; i++) {
 id = 'msg' + i;
 addRow(id, msg(i+1 ,id, link+rList[i], rList[i]));

 }
}

function addRow(targetID, msg){
 const div = document.createElement('div');
 div.className = targetID + 'C';
 div.innerHTML = msg;
 list.push(div);
 document.getElementById('inboxMSG').appendChild(div);
}

function msg(num, targetID, link, time){

 return `
 <a href="#" class="list-group-item list-group-item-action d-flex gap-3 py-3"
aria-current="true" data-bs-toggle="modal" data-bs-target="#${targetID}">
 <img src="/images/detection.jpg" alt="twbs" width="32" height="32"
class="rounded-circle flex-shrink-0">
 <div class="d-flex gap-2 w-100 justify-content-between">
 <div>
 <h6 class="mb-0">Auto Detection ${num}</h6>
 </div>
 <small class="opacity-50 text-nowrap">now</small>
 </div>

 <div class="modal fade" id="${targetID}" tabindex="-1" aria-
labelledby="exampleModalLabel" aria-hidden="true">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <h1 class="modal-title fs-5" id="exampleModalLabel">Auto
Detection ${num}</h1>
 <button type="button" class="btn-close" data-bs-dismiss="modal"
aria-label="Close"></button>
 </div>
 <div class="modal-body">

 <!--<img src="${link}" alt="Workplace" usemap="#workmap"
width="400" height="379">-->
 <video class="inboxVideo" controls autoplay="true"
muted="true">
 <source src="${link}" type="video/mp4">
 </video>
 <p>Auto Detection at ${time}</p>
 </div>
 </div>
 </div>
 </div>
 `;
}

function getList(url, cb){
 const xhr = new XMLHttpRequest();
 xhr.onreadystatechange = status => {
 if(xhr.readyState == XMLHttpRequest.DONE){
 cb(JSON.parse(xhr.responseText));
 }
 }

 xhr.timeout = 10000;
 xhr.open('GET', url);
 xhr.send();
}

function getLink(IoTName, region){
 return `https://${IoTName}.s3.${region}.amazonaws.com/`;
}

D. Website Stream JavaScript Code

$(function(){
 let socket = io();

 socket.on("stream", (data) => {

 console.log('code: ' + data);

 var playerElement = $('#video-player');

 if(data == 404){
 playerElement.hide();
 $('#novideo').html('⚠Live Stream is Not Available⚠');
 $('#cameraStatus').html('Offline');
 $('#cameraStatus').css('color', 'red');

 }
 else{
 const playbackUrl = data;
 playerElement.show();
 var player = new Hls();
 console.log('Created HLS.js Player');
 player.loadSource(playbackUrl);
 player.attachMedia(playerElement[0]);
 console.log('Set player source');
 document.getElementById('video-player').autoplay = true;
 $('#cameraStatus').html('Online');
 $('#cameraStatus').css('color', 'green');
 player.on(Hls.Events.MANIFEST_PARSED, function() {
 player.play();
 console.log('Starting playback');
 });

 }

 });
});

E. Website HTML Main Code

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
 <link
href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css"
rel="stylesheet" integrity="sha384-
T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN"
crossorigin="anonymous">
 <link rel="stylesheet" href="/css/style.css">
</head>
<body>

 <!-- text-center -->
 <div class="fullPageContainer">
 <div class="row">

 <!-- Live -->
 <div class="col-12 col-md-9 allContainer liveContainer">
 <div class=" my-3 p-3 contentContainer rounded shadow-sm content2">

 <h3 id="txtHint" class="border-bottom pb-2 mb-0 text">LIVE! [<span
id="cameraStatus">Offline]</h3>

 <!-- Video -->

 <div class="text-center">
 <h1 id="novideo"></h1>
 <!-- width="100%" height="500" controls autoplay playsinline-->
 <video id="video-player" class="videoContainer" controls
autoplay="true" muted="true">
 </video>

 </div>

 </div>
 </div>

 <!-- Controll -->

 <div class="col-12 col-md-3 allContainer">
 <div class="my-3 p-3 contentContainer rounded shadow-sm content2">
 <h3 class="border-bottom pb-2 mb-0 text">Control</h3>
 <div class="p-3">
 <!-- text-center -->

 <form action="/submit" method="POST">

 <div class="form-check form-switch py-2">
 <input class="form-check-input" type="checkbox" id="Camera"
name="Camera">
 <label class="text" for="Camera" name="Camera">Camera
ON/OFF</label>
 </div>

 <div class="form-check form-switch py-2">
 <input class="form-check-input" type="checkbox" id="Detection"
name="Detection">
 <label class="text" for="Detection" name="Detection">Auto
Detection</label>
 </div>

 <div class="form-check form-switch py-2">
 <input class="form-check-input" type="checkbox" id="SetTime"
name="SetTime">
 <label class="text" for="SetTime" name="SetTime">Set a Time</label>

 </div>

 <div class="py-2">
 <label class="text" for="startTime">Start:</label>

 <input type="datetime-local" id="startTime" name="startTime">
 </div>

 <div class="py-2">
 <label class="text" for="endTime">End:</label>

 <input type="datetime-local" id="endTime" name="endTime">
 </div>

 <div class="py-2">
 <label class="text" for="delayDetection">Detection Delay
(Sec):</label>

 <input type="number" id="delayDetection" name="delayDetection">
 </div>

 <button type="submit" value="OK" class="btn btn-light">Save</button>

 </form>

 <!-- <button id="MSGbutton" type="button" class="btn btn-light"
name="btn11">add</button> -->

 </div>
 </div>
 </div>

 <!-- Alert -->
 <div class="col-12 allContainer ">
 <div class="my-3 p-3 contentContainer rounded shadow-sm">
 <h3 class="border-bottom pb-2 mb-0 text inboxLen">Inbox</h3>
 <div class="d-flex flex-column flex-md-row p-4 gap-4 py-md-5">
 <div class="list-group w-100" id="inboxMSG">

 <!-- alerts will added here -->
 </div>
 </div>
 <!-- End -->

 </div>
 </div>

 </div>
 </div>

 <script src="https://cdn.jsdelivr.net/npm/hls.js@latest"></script>
 <script src="https://player.live-video.net/1.22.0/amazon-ivs-
player.min.js"></script>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/howler/2.1.2/howler.core.min.js"></script>

 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.7.1/jquery.min.js"></script>
 <script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/js/bootstrap.bundle.min.js"
integrity="sha384-C6RzsynM9kWDrMNeT87bh95OGNyZPhcTNXj1NW7RuBCsyN/o0jlpcV8Qyq46cDfL"
crossorigin="anonymous"></script>
 <script src="/socket.io/socket.io.js"></script>
 <script src="/JS/stream.js"></script>
 <script src="/JS/inbox.js"></script>
 <script src="/JS/control.js"></script>

</body>
</html>

	I. Introduction
	II. Paper Structure
	III. Literature Review
	IV. System Design And Architecture
	A. Hardware
	B. Software & protocols

	V. Implementaion
	A. Raspberry Pi OS Setup
	B. PuTTY & RealVNC Setup
	C. Motion Detection Setup
	D. AWS Services Setup
	E. MQTT Setup

	VI. Results and Discussion
	A. Functionality Testing & Interface Efficiency
	B. Challenges & Solutions

	VII. Conclusion
	Acknowledgment
	References

	VIII. Appendix
	A. AWS Service (MQTT & S3) & Motion Detection Code
	B. Website dashboard JavaScript Code
	C. Website Inbox JavaScript Code
	D. Website Stream JavaScript Code
	E. Website HTML Main Code

